科学研究費助成事業

研究成果報告書

平成 26 年 6月 18日現在

機関番号: 8 2 1 0 2
研究種目: 若手研究(B)
研究期間: 2011 ~ 2013
課題番号: 2 3 7 1 0 2 1 1
研究課題名(和文)積雪物性値の気候依存性に関する研究
研究課題名(英文)Dependence of snow physical properties on climatic conditions
研究代表者

山口 悟(Yamaguchi, Satoru)
独立行政法人防災科学技術研究所・観測・予測研究領域 雪氷防災研究センター・主任研究員
研究者番号: 7 0 4 2 5 5 1 0
交付決定額(研究期間全体): (直接経費) 2.900,000円、(間接経費) 870,000円

研究成果の概要(和文):積雪の物性値の時空間変化は、大気の循環にも影響を与える非常に重要な問題である.しかし気候・気象モデル内では、積雪物性値は一様とされる事も稀ではない.本研究は、全層平均密度())並びに全層平均熱伝導率(C)の値並びにその空間分布が日本において時期によりどのように変化するかを求めた.その結果同じ場所でも時期によってとCの値が異なること、同時期でも場所によってとCが異なること、分布の様子も時期によって異なることを明らかにした.本研究の結果は、大気と積雪との熱のやりとりを考える際に、積雪の物性値を気候モデルや気象モデル内で一様の定数とするのは非現実的であることを示している.

研究成果の概要(英文): Seasonal snow cover is one of the most extensive cryospheric phenomena, exerting s ignificant climatic impacts not only in the high-latitude/ high-altitude regions but also in the mid-latit udes. However, Large-scale climate models such as global climate models (GCM), Earth System Models (ESM), or regional climate models (RCMs) on regional scales usually treat snow physical properties (e.g. density, thermal conductivity) to be independent of spatiotemporal fluctuation. In this study, spatiotemporal fluctuations of snow physical properties in Japan were estimated. The results demonstrate the spatiotemporal f luctuations of snow physical properties, and the dependence of the spatial distribution of snow physical properties the problem to treat snow physical properties constantly in the GCM, ESM, RCMs models.

研究分野: 複合新領域

科研費の分科・細目: 社会・安全システム科学 自然災害科学

キーワード:積雪 物理特性 積雪物理モデル 気候依存性

1.研究開始当初の背景

 (1) 季節積雪の存在は、最も広域に及ぶ寒冷 圏現象の一つであり、その気候的影響は高緯 度・高標高域のみならず,中緯度地域におい ても重要である.季節積雪が存在する地域で は、積雪期間中の大気と地表面との熱のやり 取りは、積雪を通じて行われる. したがって 積雪の物性値(熱伝導率や密度等)の時間変化 は、積雪と大気との間の熱のやり取りに影響 を与え、最終的に大気の循環にも影響を与え る非常に重要な問題である.近年温暖化の影 響で北半球の積雪面積は減少しているとい う報告がなされている(たとえば Rikiishi, 2004)が、積雪の物理的特性の面的分布が面 積変化に伴いどのように変化しているかを 議論された例はない. 一方, 近年温暖化予測 などに使われている大循環モデル内では、そ の積雪の物性値は非常に粗く取り扱われて おり、例えば,密度や熱伝導率が全球また全 積雪期間を通して一様とされる事も稀では ない.しかし、先に述べたように季節積雪が 存在する期間、大気と地表面の熱のやり取り は積雪を通じて行われために、気候変動に伴 う積雪の物理的特性の変化をきちんと把握, 気候モデルに取り込まなければ、将来予測に おいて大きな予測の不確実さを生むことに かる

(2) もっと狭い領域、短い時間(数時間から数 日先)の気象状況の計算を行う地域気象モデ ルにおいても、積雪の物性値は地域依存性及 び季節を問わず一定で取り扱うのが一般的 である.しかし日本の日本海側などを考えた 場合,海岸線から脊梁山脈にかけての数十 kmの間に、積雪がない状態から 6m 以上に急 激に変化することも珍しくなく、また雪質も 多種多様である.実際に低温室実験において. たとえ同じ密度の雪でも雪質が変わると熱 伝導率が変化すると言う報告(山口ほか、 2010) もあり、大気と積雪との熱のやりとり を考える際に、積雪の物性値をモデル内で一 様の定数とするのは現実的ではないと予想 される. しかしそれらのモデルにおける積雪 の物理的物性値の取扱い方の妥当性に関し て定量的な議論はされてこなかった.

2.研究の目的

本研究は"積雪の物性値の時間的・空間的変 化と気候との関係"とを明らかにするために 様々な気候下の積雪地帯(多様な雪質,海岸 部~豪雪地帯)があり,かつ高空間分解能で 気象観測(AMeDAS等)を行っている日本をモ デル研究対象地域と定め,1)様々な気候域で 積雪物性値の測定を行い,両者の関係を明ら かにするとともに,2)積雪物理モデルと既存 の気象データとを組み合わせた数値計算に より,平地だけではなく山地における広域積 雪物性値分布の計算を行うという観測・モデ ルの両方からのアプローチをとることにす る.またそのために野外で客観的に積雪物性 値を測定できる手法の開発を行う. 3.研究の方法

本研究では、研究期間内に効率よく成果を 挙げるために、積雪と大気との相互作用を考 える際に重要な物性値(熱伝導率や密度)の 気候依存性を明らかにする.そのためには

- a) さまざまな積雪条件化における積雪の熱 伝導率と密度の時系列データ取得のため の観測網の整備
- b) 気象庁等が公開している気候値を入力デ ータを用いた積雪物理モデル計算スキー ムの開発
- の二つを行うものとする.

a)に関しては、防災科学技術研究所(以後, 防災科研)が新潟県長岡市と山形県新庄市で 20 年近く行っている詳細な積雪断面観測デ ータに加え、他の研究所が公開している積雪 断面観測データを利用することにより、多様 な気候下の積雪に関する積雪物性の時系列 変化データを得る.また防災科研が全国の山 地に設置している"積雪気象ネットワーク (SW-Net)(Yamaguchi et al., 2011)"に雪温セン サーを追加することで、山岳域の積雪の熱伝 導率の時間変化をモニタリングする.

b)に関しては、現在防災科研が雪崩発生予 測のために開発を行っている積雪物理モデ ル(SNOWPACK(Hirasima et al., 2010))の計算 スキームを基に改良を行う.その結果を踏ま え、必要であれば SNOWPACK の改良に必要 な実験を行いつつ、気象モデルに還元できる 精度を持ちうる積雪の物性値の時間的・空間 的変化を求める.なお気象庁の AMeDAS 等 のデータがあまりない標高の高い地域には、 AMeDAS データに加え SW-Net の気象データ を使用することにより、雪国の大部分を占め る山岳気候地帯にも上記の結果を展開する.

4.研究成果

(1) SNOWPACK の性能評価

平地における積雪物理モデル (SMOWPACK)の精度評価に関しては、山形 県新庄市、新潟県長岡市、新潟県十日町市の 2008/2009, 2009/2010, 2010/2011 の3 冬期のデ ータを用いて、積雪内部の水の移動の計算を 改良した SNOWPACK(Yamaguchi et al., 2010; 2012, Hirashima et al., 2010)で計算を行い、積 雪変質モデルの結果と断面観測との比較を 行った(平島・山口, 2012).

その結果、積雪内部の水の移動も含めてモ デルの結果は実際の観測をよく再現してい ることがわかった.また上記3つの国内の観 測点に加え、アラスカの2点(フェアバンク ス、バロー)において、モデルの計算結果と実 測との比較を行った(Saito et al., 2012).その 結果、気候帯が異なっていてもSNOWPACK は、比較的精度よく積雪の物性値を再現する ことがわかった(図1).このことは、 SNOWPACKを用いて面的に積雪物理量を計 算する妥当性を示すものである.

図1 フェアバンクス(2009/2010)における 熱伝導率のモデルの結果と実測との比較 カラーは熱伝導率の大きさを示す。ドット は現地で実測された値 (Saito et al., 2012 より引用)

(2) SNOWPACK の改良に向けた実験

積雪の圧縮粘性係数(η)は、密度変化やク リープ現象など積雪の基本的振る舞いにか かわる重要な変数である。一般的に n. は、雪 温と密度の関数として表されている(前野・ 黒田,1986). しかし近年標高の高いところに 存在する氷河で掘削されたアイスコアを用 いた古環境復元や、火星の氷床の流動やその 成り立ちなどの研究など, 従来の雪氷学の想 定外の条件下(常気圧以外の圧力場)におけ る積雪の現象に関する研究も進んできてい る. また日本の高山域のような平地よりも気 圧が低い場所に存在する積雪を考える上で も、常気圧下で求められた η_cをそのまま使用 してよいか疑問が残る.しかしそのような常 気圧下でない条件における η_c に関する研究 はこれまであまり行われていなかった. そこ で本研究では、*η*。が気圧の変化によっても変 化しうるのかを実験的に明らかにすること を試みた.

図2は気圧別の η_c と密度(ρ)の関係を示して いる.図2の結果は η_c と ρ の関係には明らか に気圧依存性があること、すなわち同密度に おいて η_c の値は気圧が低いほど小さい、言 い換えれば雪が圧縮されやすいということ を示している.

今回の実験の範囲の密度における圧密過 程では、雪粒子の再配列が支配的であると考 えられる.したがって、気圧が小さいほうが η_cが大きくなる理由としては、以下のメカニ ズムが考えられる.

- 1. 常気圧下に比べて, 低圧下のほうが雪粒 子の昇華が促進.
- 2. その結果, 低圧下の雪粒子のほうが早く 球形に近い形状となる.
- 樹枝状の雪粒子よりも球形の雪粒子のほうが再配列がしやすいため再配列が進み、その結果低圧化の圧密が促進された.

本実験結果で示された η_c の気圧依存性は 高山域で取得されたコアの解析などに重要 になってくるだけではなく,標高の高い山岳 域などで発生する雪崩の予測などにも重要 になってくる可能性がある(山口ほか,2011; 2013).

(3) 積雪の物理特性を客観的の測定する手法の開発

自然積雪は複雑な3次元のネットワーク構 造を持っている.しかし従来の断面観測の測 定方法だと必ずしもその特徴を反映してい る物理量が得られている訳ではない.比表面 積(SSA)は,粉体などの多孔質物質の組織構 造を表す物理量の一つで,単位質量もしくは 単位体積当たりの粉体粒子の表面積のこと である.従って雪粒子のサイズだけではなく, 形状や結合状態も反映した物理量である.

従来日本における積雪の SSA の測定方法 としては、片薄片を用いた方法が主流であっ たが、その制作には時間がかかり、定期的な 野外観測で行うのは困難であった.近年野外 で簡単にSSAを測定する手法として、近赤外 領域の反射率を使いる方法(NIR 法)が提案さ れている(Matzl and Schneebeli, 2006).しか しその手法は乾いた雪の測定結果を基に開 発されたものである.そこで NIR 法を日本の 濡れ雪地帯で適応可能かどうかに関して試 験を行い、改良点を明らかにした(Yamaguchi et al., 2014).これにより、従来の断面観測と 比べより客観的に積雪物性値の測定が可能 となった.

(4) 気温別降水分布の年々変動について

積雪の物性値を計算する際に、当初は平年 値を入力データとして、計算を行うことを考 えていた.しかし平年値を入力データとする と、本州の日本海側においては、積雪構造を うまく再現しないという結果が得られた.そ の原因を解明するために、新潟県にある気象 庁の観測所(26 地点)における過去 19 冬期(12 -2月)の1時間ごとの気象データを使い、降 水時の気温別に冬期降水量のうちどれくら いの割合の降水が生じているかを求めた(以後,気温別降水分布).

図3に、1996/1997冬期における長岡の気 温別降水分布を示す.長岡では、0 付近に降 水量のピーク(Ts)が存在するのがわかる.こ れはこの地方において冬期降水の多くが冬 型に伴う寒気の吹き出し(0 付近まで気温 が下がった時)の際に生じるということを示 している.一方、平年値を用いてしまうと、 寒気の吹き出しのようなイベントが再現さ れないために、降雪量が再現されないという ことがわかった.

その後、気温別降水分布に関してさらに詳 しい解析を行った結果、新潟県ではToの年々 変動が小さい地点と大きい地点があること、 Ts の年々変動が小さい地点では、気温別降水 分布のパターンが 0 付近に一つだけピーク をもつタイプ(ひとこぶ型)であるのに対し、 Ts の変動が大きい地点は、ピークを二つ以上 もつタイプ(多こぶ型)であることがわかっ た. さらに多こぶ型でも、 ピークのうちの つは 0 付近に現れる事も明らかになった。 0 付近に気温別降水量のピークが出る理由 としては、プラスの温度下の降雪において、 降雪が降ってくる最中に融解することで潜 熱を吸収し、周りの空気の温度を 0 付近ま で下げるというメカニズムが考えられる こ のようなメカニズムは従来指摘されてこな かったものであり,温暖化に対する日本海側 の降雪の応答は、現在考えられているものよ りもより複雑である可能性を示唆している (Yamaguchi et al., 2013).

(5) 積雪物性値の面的分布と季節変動 平地アメダスの気候値を用いた積雪の物 性値の広域計算に関しては、入力データと して1)平年値を利用する方法(平年値法),2) 平年値に近い積雪深変化を示す年を数年選 びだし、その気象データを利用して計算を し、計算結果を平均する方法(積雪深重視 法)、3)最近10年間の気象データを入力デ ータとして利用して計算を行い、計算結果 を平均する方法(毎年平均法)、の3つの方 法を試した.その結果、1)の方法では、北陸 などの暖かい地方では、うまく積雪状況を再

図4 北海道における全層平均密度(Density)の 時空間変化の計算結果

a, b: 12 月中旬 c, d: 2 月中旬

図5 北海道にのりる主層平均熟法等率 (Conductivity)の時空間変化の計算結果 a, b: 12 月中旬

c, d: 2 月中旬

現できないことが分かった.これは平年値で は降雪を引き起こすイベントがならされて しまうためである.2)並びに3)の方法に関し て、どちらの方法でも、ある程度妥当な積 雪状況を再現したが、両者の計算結果には 若干の違いが表れた.そのため目的に応じ て計算方法を使い分ける必要があることが わかった.

図4に"積雪深重視法"を用いて,12月中 旬並びに2月中旬の北海道における積雪の全 層平均密度(density)の分布がどのようになる かを計算した結果を,図5に"積雪深重視 法"を用いて,12月中旬並びに2月中旬の北 海道における積雪の全層平均熱伝導率 (Conductivity)の分布がどのようになるかを計 算した結果を示す.計算に使った平地のア メダス地点は北海道内にある21カ所である.

図4,5中において,a,cは個々のアメダス における計算結果,図4,5中のb,dは,個々 のアメダスの計算結果からソフト(G-sharp) を用いて,面的分布を求めた結果を示して いる.図4と5の結果から,同じ場所でも時 期によって平均密度と平均熱伝導率の値が 大きく異なること,同じ時期でも場所によ って平均密度と平均熱伝導率が異なること がわかる.またそれらの分布の様子も時期 によって大きく異なることも明らかになっ た.このことは,大気と積雪との熱のやりと りを考える際に,積雪の物性値を気候モデル や気象モデル内で一様の定数とするのは非 現実的であることを示している.

今後も実際の気候・気象モデルを取り扱っている研究者と情報交換を続け、本研究成果 をそれらのモデルに反映させるためのパラ メタリゼーションの方法等に関しての検討 する予定である.

参考文献

(* 5. 主な研究論文等 " に挙げられているものは除く)

- Hirashima, H., S. Yamaguchi, A. Sato, M. Lehing, 2010. Numerical modeling of liquid water movement through layered snow based on new measurements of the water retention curve. *Cold Regions Science and Technology*, **64**. 94-103.
- 前野紀一・黒田登志雄(1986):雪氷の構造と 物性. 古今書院. 209pp
- Matzl, M. and M., Schneebeli, 2006. Measuring specific surface area of snow by near-infrared photography. *Journal of Glaciology*, **52**, 558-564
- Rikiishi, K., E. Hashiya, M. Imai, 2004. Linear trends of the length of snow-cover season in the Northern Hemisphere as observed by the satellites in the period 1972-2000. *Annals of Glaciology*, **38**, 229-237.
- 山口悟・阿部修・杉山慎・望月重人,2010. し もざらめ化に伴う積雪の物理特性の変化 に関する実験的研究. 寒地技術論文・報告 集報告集,70-74.
- Yamaguchi, S., O. Abe, S. Nakai, A. Sato, 2011. Recent fluctuations of meteorological and snow conditions in Japanese mountains. *Annals of Glaciology*, **52**. 209-215.
- Yamaguchi, S., T. Katsushima, A. Sato, T. Kumakura, 2010. Water retention curve of snow with different grain sizes. *Cold Regions Science and Technology*, **64**. 87-93.

5.主な発表論文等

(研究代表者、研究分担者及び連携研究者に は下線)*は本文中の引用文献

[雑誌論文](計 7件)

<u>Yamaguchi, S.,</u> H. Motoyoshi, T. Tanikawa, T. Aoki, M. Niwano, Y. Takeuchi and Y. Endo, 2014. Application of snow specific surface area measurement using an optical method based on infrared reflectance with 900 nm wavelength to the wet snow zones in Japan, *Bulletin of*

Glaciological Research, 查読有, 32, 印刷中.*

Yamaguchi, S., K. Iwamoto, S. Nakai, 2013. Interannual fluctuations of the relationship between winter precipitation and air temperature in the heavy-snowfall zone of Japan. *Annals of Glaciology*, 查読有, 54, 183-188. *

平島寛行・山口悟,2012,断面観測及びラ イシメータのデータを用いた積雪水分移 動モデルの検証,寒地技術論文・報告集, 査読有,28,44-48.*

山口悟・渡辺晋生・石井吉之,2012,積雪 内部の水の移動に関する実験的研究,日本 水文科学会誌,査読有,89-100.

Saito, K., <u>S. Yamaguchi</u>, H. Iwata, Y. Harazono, K. Kosugi, M. Lehning, M. Shulski, 2012, Climatic physical snowpack properties for large-scale modeling examined by observations and a physical model, *Polar Science*, 査読有, **6**, 79-95. *

<u>Yamaguchi, S.</u>, K. Watanabe, T. Katsushima, A. Sato, T. Kumakura, 2012. Dependence of the water retention curve of snow on snow characteristics. *Annals of Glaciology*, 查読有, **53**, 6-12. *

<u>山口悟</u>・佐藤威・望月重人,2011,積雪の 圧縮粘性係数の気圧依存性に関する研究, 寒地技術論文・報告集報告集,査読有,42-45.

[学会発表](計 9 件) 山口悟,本吉弘岐,青木輝夫,谷川朋範, 八久保晶弘.体積含水率の変化に伴う積 雪の近赤外領域の反射率の変化,雪氷研 究大会(2013・北見),2013年9月17日-9 月21日,北見.

<u>山口悟</u>, 佐藤威, 望月重人, 八久保晶弘, 青木輝夫. 積雪の圧縮粘性係数に対する 大気圧の効果. 雪氷研究大会(2013・北見), 2013年9月17日-9月21日, 北見.* 平島寛行・<u>山口悟</u>. 積雪中における水分移 動のモデル化(2)-多次元水分移動モデル の開発-,雪氷研究大会(2012・福山), 2012 年9月23日-9月27日,福山. <u>山口悟</u>・平島寛行・佐藤篤司. 融雪水の積 雪内への不均一浸透と気象条件との関係, 雪氷研究大会(2012・福山), 2012年9月23 日-9月27日,福山.

平島寛行・山口悟・根本征樹.積雪断面観 測データを用いた積雪変質モデルの検証, 雪氷研究大会(2012・福山),2012年9月23 日-9月27日,福山.*

<u>Yamaguchi, S.</u> and K. Watanabe. Application of soil physics to modeling the unsaturated hydraulic conductivity of snow cover, International symposium on seasonal snow and Ice, 2012年5月28日-6月1日, フィンラン ド.

Yamaguchi, S., K. Iwamoto and S. Nakai.

Interannual fluctuation of winter-precipitation air-temperature relationship in the warm temperature zone of Japan, International symposium on seasonal snow and Ice, 2012 年 5月28日-6月1日,フィンランド 山口悟・渡辺晋生. 土壌分野の理論を応用 した積雪内部の水の移動に関する研究,雪 氷研究大会(2011・長岡), 2011年9月19日 -9月23日,長岡. 平島寛行・山口悟. 積雪-土壌間の水の移 動モデルの構築,雪氷研究大会(2011・長岡), 2011年9月19日-9月23日,長岡.

6 . 研究組織

(1)研究代表者
 山口 悟(YAMAGUCHI SATORU)
 独立行政法人防災科学技術研究所・観測・
 予測研究領域 雪氷防災研究センター・主
 任研究員
 研究者番号: 70425510