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A study on knots and transverse knots using braid theory and Floer theory
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I constructed an example of a pair of closed 4-braids with the following propertie

s; (1) they are related by a Hopf-flype, (2) they are distinct as transverse knots, (3) they have the same

self-linking number. 1 also constructed a similar example of a pair of a closed 3-braid and a closed 7-br

aid. | determined 2-bridge numbers of torus knots of type (p, q), where p and q are integers. | also deter
mined 2-bridge numbers of knots that had alternating diagrams of closed braids. An invariant of a mapping

class group of a surface (fixing its boundary) is defined in bordered Floer theory. When a surface has one
boundary component and is of genus 2, 1 calculated this invariant for elements in Torelli group. Torelli
group is a subgroup of a mapping class group of a surface that acts trivially on its first homology group.
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