

科学研究費助成事業(科学研究費補助金)研究成果報告書

平成25年 6月 4日現在

機関番号:12601	
研究種目:研究活動ス	くタート支援
研究期間:2011~2012	2
課題番号:23860017	
研究課題名(和文)	多層化による核融合炉ブランケット配管用トリチウム透過防止膜の 高度化研究
研究課題名(英文)	Development of multilayer coatings for tritium permeation barrier in fusion blankets
研究代表者	
近田 拓未(CHIKADA TAKUMI)	
東京大学・大学院工学系研究科・助教	
研究者番号:20614	366

研究成果の概要(和文):核融合炉ブランケットにおいて、トリチウムの透過漏洩は燃料サイク ル成立性とトリチウム安全性の観点から最も重要な検討課題の一つである。本研究では、配管 等からのトリチウムの透過損失を低減するための技術として、トリチウム不透過性の薄膜を多 層化することによる高性能化の検討を行った。これまで多くの精密な透過挙動が得られている 酸化エルビウム薄膜を基礎に、酸化エルビウム薄膜上に鉄を蒸着させ複層化した試料について、 水素透過挙動および液体リチウム鉛共存性を調べた。水素透過試験においては複層膜の各層が 透過挙動に独立に寄与することが明らかになり、ブランケットの要求に応じたトリチウム透過 防止膜の設計可能性を示した。液体リチウム鉛共存性試験では、鉄薄膜によって腐食速度が低 減されたことから、保護膜による長寿命化の有効性が明らかになった。

研究成果の概要 (英文): Tritium permeation through structural materials at fusion reactor blankets is one of the most crucial issues because it can lead to loss of fuel and other radiological hazards. In this study, deuterium permeation experiments and lithium-lead compatibility tests have been performed on Er_2O_3 and Er_2O_3 -metal (two-layer) coatings to further the discussion of permeation and corrosion behaviors on multilayer coatings. Deuterium permeation of the coatings showed that surface-oxidized metal layer influenced permeability, indicating that higher permeation reduction factors and reliability can be obtained by layering ceramic-metal structures. Compatibility tests proved that the corrosion rate of the Er_2O_3 -Fe coatings was lower than that of the Er_2O_3 coatings.

交付決定額

(金額単位:円) 直接経費 間接経費 合 計 2011 年度 1, 200, 000 360,000 1,560,000 2012 年度 1, 100, 000 330,000 1,430,000 2, 300, 000 690,000 2,990,000 計 総

研究分野:工学

科研費の分科・細目:総合工学・核融合学 キーワード:トリチウム、水素、ブランケット、薄膜、酸化エルビウム

1. 研究開始当初の背景

実用化に向けて研究が進められている DT 核融合炉の燃料において、天然の存在量がき わめて少ないトリチウムは炉心プラズマの 周囲に敷設したブランケットで生産し、再び 燃料として炉心に注入されるサイクルを成 立させる必要がある。その中で、500℃以上 の高温におけるブランケット配管からのト リチウムの透過損失は、燃料回収率の低下お よび炉外作業者の被曝の観点から解決すべ き最重要課題の一つである。この課題を克服 するために、容器および配管内面に水素透過 を低減する薄膜を設置することが検討され ており、1970年代から現在まで酸化物、炭化 物等の各種セラミックスが水素透過防止性 能を示すことが報告されている。しかし、研 究毎に透過防止性能は4桁程度分散しており、 またこの性能は粉末焼結体よりも数桁低い ものであった。当該分野の明らかな問題は、 過去の研究の多くが薄膜の試作と水素透過 防止性能の検討のみに主眼が置かれ、薄膜の 微細構造と水素透過挙動の対応関係が詳細 に調べられておらず、薄膜中の水素透過メカ ニズムが統一的に解明されていないことで ある。

研究代表者は、高い熱効率とコンパクトな 構造で有望と考えられている液体金属リチ ウムブランケットシステムで求められてい る化学的安定性の高い電気絶縁性薄膜とし て研究が開始された酸化エルビウム (Er₂O₃) を中心として、緻密で高結晶性という電気絶 縁性と共通した性質が求められるトリチウ ム透過防止性へと展開して研究を進めてき た。これまで、気相法と液相法によって均一 な薄膜が作製され、微細構造の分析と高感度 の水素同位体透過試験によって数々の水素 透過挙動が解明された。中でも、薄膜の結晶 粒径が大きくなるほど透過防止性能が向上 したこと、基板両面に成膜した試料が世界最 高性能の透過防止性能(873 K で基板の 1/10⁵) を示したことなどは、これまで点在していた 当該分野の研究結果を一貫した理論で説明 し、かつ実機における成膜手法として適用可 能性を示したきわめて重要な成果であった。 また、両面成膜によってきわめて高い透過防 止性能が得られたことから、セラミック薄膜 に金属の中間層を挟むことで多層化するこ とによる大幅な性能および信頼性の向上が 提言された。セラミックスと金属による薄膜 の多層化によって、固溶・拡散過程を多く作 ることによる透過防止性能の大幅な向上の みならず、その強い還元性から共存材料が著 しく限られる液体金属との接触面を金属膜 にすることによって化学的共存性の向上が 望め、多くのブランケットシステムで適用可 能のより信頼性の高いトリチウム透過防止 膜が開発可能であると考えられた。

研究の目的

本研究は、いまだ実用に供しうる高い性能 と信頼性を有する薄膜材料および成膜手法 は確立されておらず、また薄膜中のトリチウ ム透過機構の解明がいまだ不十分であるト リチウム透過防止膜について、近年見出され た透過防止膜の多層化による高性能、高信頼 性の付与に着目し、実機導入を目指した成膜 手法を開発すると同時に、多層膜中の水素同 位体透過機構を解明することを目的とした。

3.研究の方法

多層膜の作製として、まず、基板側からセ ラミックスー金属の順に成膜を実施した。基 板として核融合炉の有力な構造材料候補で ある低放射化フェライト鋼(F82H および JLF-1)を基板に用い、1 層目には、これまで の研究で均一で剥離がなく、973 K までの熱 サイクル下で劣化しないことが示されてい る Er₂0₃ 薄膜を真空アーク蒸着法によって成 膜した。2層目の金属膜は、Er₂O₃の熱膨張係 数に近い値を持つ Fe および Er を材料として、 低温で均一な成膜が可能なスパッタリング 法を用いて成膜した。多層膜が形成されてい るかは、走査型電子顕微鏡(SEM)を用いた 断面観察によって確認した。また、界面で層 同士の反応が起こっていないかをX線回折に よって解析した。

薄膜試料の水素透過挙動の検討は、図1に 示す水素透過装置によって実施した。メタル シールで試料を挟み込み、両側を10⁻⁶ Pa 以 下まで排気した後に、装置左側(上流)に10³ ~10⁵ Pa の範囲で高純度の重水素を導入し、 電気炉で加熱された試料部から透過した重 水素量の経時変化を装置右側(下流)の四重 極型質量分析計(QMS)で測定する仕組みで ある。この試験で得られる諸物理量は過去に 検討された単一材料中の固溶と拡散から導 かれた次式で議論する。

$$I = P \frac{p^{0.5}}{d}, \tag{1}$$

$$P = P_0 \exp\left(-\frac{E_P}{RT}\right). \tag{2}$$

ここで、*J*は単位面積、単位時間あたりの水 素透過量(mo1/m²s)、*P*は材料固有の水素透過 係数(mo1/m s Pa^{0.5})、*p*は上流の水素圧力(Pa)、 *d*は試料厚さ(m)、*E*_Pは透過の活性化エネルギ ー(J/mo1)、*R*は気体定数(J/mo1 K)、*T*は温 度(K)である。上式は試料中を水素原子が拡 散律速で移動する時を仮定した場合である

が、Jの圧力依存性からpの指数部を求める ことで透過の律速過程を検討することがで きる。また、透過現象が熱活性化過程である ことから、アレニウスプロットの傾きから Ep を議論することができ、膜組織を透過する際 のエネルギー障壁の考察を行った。

さらに、多層膜試料のブランケット環境に おける健全性を評価した。熱サイクル下での 透過挙動の変化は、最高温度 700℃で透過試 験を行い、試験後直ちに電気炉の電源を切り、 空冷にて室温まで急冷した。これを繰り返し て熱サイクルの影響を調べた。液体リチウム 鉛(Li-Pb、代表的な組成は Li_{15.7}Pb_{84.3})との 共存性試験では、ブランケットの適用温度で ある 673~873 K において 100~1500 時間の 浸漬試験をステンレス容器に密閉して行い、 試験後表面分析を通して腐食生成物の有無 や薄膜組織の健全性について議論した。

4. 研究成果

作製後の Er₂0₃-Fe および Er 複層膜の断面 像を図2に示す。Fe と Er で成膜速度が大き く異なり、Fe では 15 分間の成膜で 30 nm 程 度のきわめて薄い層であるのに対し、Er では 2 μm 程度の膜厚となることが SEM 観察によっ て明らかになった。これは、Fe が磁性体であ り、成膜時に生成されるアルゴンプラズマと 干渉したためと考えられる。しかしながら、 元素マッピングにより、Fe 層はくまなく Er₂0₃ 層を覆っていることが確認された。

図3に、Er₂0₃-Fe 薄膜試料の水素透過係数 の温度変化を示す。透過試験を繰り返す毎に

 3.2 Ef 203 海峡工にFe およびEf をへバック リング法で成膜した複層膜試料の断 面 SEM 像 (a) Er 203-Fe 複層膜試料 (b) (a) の 元 素 マ ッ ピ ン グ 図 (c) Er 203-Er 複層膜試料 透過係数が減少し、最終的に基板に対して約 1/5000の透過防止性能を示した。これは過去 に得られているEr₂0₃薄膜のみの場合 (1/1000) と比べて高い性能であった。透過 フラックスの圧力依存性を調べたところ、表 面反応律速が確認され、表面観察およびX線 回折結果から、表面のFe層の酸化が示唆され た。加えて、アレニウスプロットの傾きから 透過の活性化エネルギーを求めたところ、 Er₂0₃単層膜の場合よりも高かったことから、 酸化されたFe層の透過挙動への寄与が示さ れた。一方で、873 K以下で透過試験を行っ た試料は、表面のFe層が酸化されず、水素透 過係数はFe層のないEr₂0₃薄膜試料と同様の 結果であった。したがって、透過挙動におい てEr203層とFe層は独立に寄与したと考えら れる。なお、Er₂O₃-Er複層膜では、973 Kまで の透過試験においてもEr₂O₃単層膜の場合と 同等の透過防止性能を示した。さらに、透過 試験後の元素分析によって、成膜した金属Er は試験中に全てEr203に酸化されたことが明 らかになったことから、Er203の単層膜に変化 したために透過防止性能が向上しなかった と考えられる。以上より、独立に透過に寄与 する多層構造を制御することによって、要求 される性能を各層に分配できる可能性があ る。これは、トリチウム透過防止膜の設計に おいて材料の組み合わせに広がりをもたら すことを示唆している。

図4に静置場Li-Pb浸漬試験後のEr₂0₃単層 膜試料における水素透過試験結果を示す。 500 hの浸漬では基板に対して1/1000という 過去に得られている浸漬前の透過防止性能 と同等の値であったため、薄膜の透過防止性 能は劣化しなかったと考えられる。一方で、 1505 h後では透過防止性能は基板の1/10程度 まで低下し、腐食や剥離による薄膜の劣化を

図3 F82H 基板および Er₂0₃(1.3 μm)-Fe(30 nm)薄膜試料の水素透過係数の変化

図4 773 K、500 h および 1505 h の Li-Pb 浸漬試験後に実施した Er₂0₃ 単層膜試 料の水素透過試験結果

図5 823 K、500 hのLi-Pb 浸漬試験後の薄 膜試料の断面 SEM 像(a) Er₂0₃ 単層膜 (b) Er₂0₃-Fe 複層膜

示した。以上より、Er₂O₃のみでは 773 K 以上 において液体 Li-Pb ブランケットによる腐食 を受けるため、保護技術等が必要になってく ると考えられる。複層膜の液体ブランケット との共存性試験では、873Kにおいては100h の浸漬でも薄膜の剥離が見られ、試験片側面 の基板-薄膜界面の腐食が示唆された。また、 773 K以上で 500 h および 1500 h の浸漬後、 図5に示すように薄膜中の Er が Li-Pb 接触 面から喪失していくことによって腐食が進 行することが見出された。加えて、図5から は腐食速度の評価もなされ、823 K、500 hの 腐食試験後の分析より Er₂0₃ 薄膜において 1 μmの膜厚の減少が見られたが、Er₂O₃-Fe 複層 膜試料では有意な減肉が認められなかった ことから、Fe 層による腐食速度低減の可能性 を示した。また、Fe 層が消失したのは脆い酸 化物に変化した後に腐食された可能性があ るため、複層膜の長寿命化には Li-Pb 中の溶 存酸素の制御が重要であると考えられる。

5. 主な発表論文等

(研究代表者、研究分担者及び連携研究者に は下線)

〔雑誌論文〕(計3件) 1) <u>Takumi Chikada</u>, Akihiro Suzuki, Freimut Koch, Hans Maier, Takayuki Terai, Takeo Muroga, Fabrication and deuterium permeation properties of erbia-metal multilayer coatings, Journal of Nuclear Materials, 査読有, 掲載決定, 印刷中 (2013)

doi: 10.1016/j.jnucmat.2013.03.084.

- <u>Takumi Chikada</u>, Akihiro Suzuki, Takayuki Terai, Takeo Muroga, Freimut Koch, Compatibility of erbium oxide coating with liquid lithium-lead alloy and corrosion protection effect of iron layer, Fusion Engineering and Design, 査読有, 揭載決定, 印刷中 (2013)
- doi: 10.1016/j.fusengdes.2013.03.075
- Chikada, 3) Takumi Shunya Naitoh. Akihiro Suzuki, Takayuki Terai, Teruya Tanaka, Takeo Muroga, Deuterium permeation through erbium oxide coatings on RAFM steels by a dip-coating technique, Journal of Nuclear Materials, 査読有, 掲載決定 (2013).

〔学会発表〕(計6件)

- <u>Takumi Chikada</u>, Akihiro Suzuki, Freimut Koch, Hans Maier, Takayuki Terai, Takeo Muroga, Fabrication and deuterium permeation properties of erbia-metal multilayer coatings, 15th International Conference on Fusion Reactor Materials, October 16-22, 2011, Charleston, U.S.A.
- 2) <u>Takumi Chikada</u>, Akihiro Suzuki, Hans Maier, Takayuki Terai, Takeo Muroga, Development of Tritium Permeation Barrier by Ceramic-Metal Multilayer Structures, Plasma Conference 2011 (プ ラズマ・核融合学会第 28 回年会), November 22-25, 2011, 石川県立音楽 堂.
- 近田拓未,鈴木晶大, Freimut Koch, Hans Maier,寺井隆幸,室賀健夫,多層 膜における水素同位体透過と液体リチ ウム鉛中化学挙動,日本原子力学会 「2012 年春の年会」,2012 年 3 月 28~ 30 日,福井大学.
- Chikada, 4) Takumi Shunya Naitoh, Akihiro Suzuki, Takayuki Terai, Teruya Tanaka, Takeo Muroga, Deuterium permeation through erbium oxide coatings on RAFM steels by 2nd Joint dip-coating technique, IAEA-EC Topical Meeting on Structural Development of New Materials for Advanced Fission and

Fusion Reactor Systems, April 16-20, 2012, Ispra, Italy.

- 5) 近田拓未,内藤駿弥,鈴木晶大,寺井 隆幸,室賀健夫,ディップコーティン グ法で作製した酸化エルビウム薄膜中 の水素同位体透過挙動,日本原子力学 会「2012 年秋の大会」,2012 年 9 月 19 ~21 日,広島大学.
- 6) <u>Takumi Chikada</u>, Akihiro Suzuki, Takayuki Terai, Takeo Muroga, Freimut Koch, Compatibility of Er203-Fe two-layer coating with liquid lithium-lead alloy, 27th Symposium on Fusion Technology, September 24-28, 2012, Liège, Belgium.

〔その他〕 ホームページ等 http://researchmap.jp/takumichikada/

6. 研究組織

(1)研究代表者
近田 拓未(CHIKADA TAKUMI)
東京大学・大学院工学系研究科・助教
研究者番号:20614366