科学研究費助成事業

研究成果報告書

科研費

平成 27 年 6 月 25 日現在

機関番号: 15501 研究種目: 基盤研究(C) 研究期間: 2012~2014 課題番号: 24560376 研究課題名(和文)スピン・ゼーベック素子の開発研究

研究課題名(英文)Development of Spin Seebeck Devices

研究代表者

小柳 剛 (Koyanagi, Tsuyoshi)

山口大学・理工学研究科・教授

研究者番号:90178385

交付決定額(研究期間全体):(直接経費) 4,200,000円

研究成果の概要(和文):本研究は、熱エネルギーを電気エネルギーに変換する新しいエネルギー変換機構の解明、及 びそれを活かした発電素子等の開発を目的として、磁性ガーネット薄膜のスピン・ゼーベック効果や磁性半導体薄膜の 異常ネルンスト効果について研究を行った。これらの効果を低温から測定できる測定装置を開発した。磁性ガーネット 薄膜は有機金属塗布熱分解(MOD)法により作製し、その組成とスピン・ゼーベック効果の関連を探った。磁性半導 体薄膜は分子線エピタキシー(MBE)法により成長させ、異常ネルンスト効果の観測とその温度依存性の考察を行っ た。

研究成果の概要(英文):We studied on the spin Seebeck effects for garnet ferrite films and the anomalous Nernst effects for magnetic semiconductor films for the purpose of clarifying the energy conversion mechanism using spin currents and developing the new energy conversion devices. The measurement equipment for both effects at low temperatures was developed to carry out our study. The garnet ferrite films were deposited by the metal organic decomposition (MOD) method, and the relation between their compositions and spin Seebeck effects was made clear. For the magnetic semiconductor films prepared by the molecular beam epitaxy (MBE) method, the anomalous Nernst effects was observed, and was investigated based on the Mott relation and the Boltzmann equation.

研究分野: 固体電子工学

キーワード: スピン流 スピン・ゼーベック効果 異常ネルンスト効果 磁性ガーネット 磁性半導体 薄膜 MO D法 MBE法

1.研究開始当初の背景

研究開始時には、斎藤氏らによりスピン・ ゼーベック効果の研究が始まっており¹⁾、パ ーマロイ金属や磁性ガーネット絶縁体に関 して、その効果が観測されていた。しかし、 深い材料研究はまだであり、スピン・ゼーベ ック効果の機構解明とともに、高い熱・電気 エネルギー変換効率をもつ材料探査はこれ からの状態であった。

また、研究開始当初において、異常ネルン スト効果についてはあまり注目されておら ず、その後の研究において磁性金属薄膜にお いて、新たな熱エネルギーと電気エネルギ ーの変換手段として報告がなされた²⁾。し かし、磁性半導体に関してはまだ研究が進ん でいない状態であった。

本研究申請者らは、多年にわたって、各 種熱電材料や希薄磁性半導体、磁性半導体 の研究も行い、磁性イオンと伝導電子の相 互作用など、伝導電子のスピンが絡む現象 の研究を行ってきた。特に、磁性半導体に 関しては、MBE 法でエピタキシャル成長さ せた Ge_{1-x}Mn_xTe 薄膜の磁気輸送特性につ いて研究を行ってきていた。

以上の背景をもとに、新たな熱・電気エ ネルギー変換素子の開発を念頭に、スピ ン・セーベック効果に加え、磁性半導体の 異常ネルンスト効果の研究を付け加えた。

2.研究の目的

本研究は、熱エネルギーを電気エネルギー に変換する新しいエネルギー変換機構の解 明、及びそれを活かした発電素子等の開発を 目的として、これまで、深い材料探査が行わ れなかった背景に、組成の異なる磁性ガーネ ット薄膜のスピン・ゼーベック効果や磁性半 導体薄膜の異常ネルンスト効果について研 究を行う。

特に、Ge_{1-x}Mn_xTe はキュリー温度~120K 以下であり、また、あまり研究が進んでいない 低温でのスピン・ゼーベック効果、異常ネル ンスト効果を明らかにするために、~5K か ら測定可能な測定装置の開発も行う。

3.研究の方法

(1) 試料の作製

Ge1-xMnxTe 磁性半導体薄膜

Ge_{1-x}Mn_xTe 磁性半導体薄膜の製膜は分子線 エピタキシー(MBE)法により GaAs(100)や (111)基板上に行った。主な作製条件は、GeTe を K-Cell で、Mn と Te を E-Gun で蒸発させ、 基板温度 300 、蒸着中の真空度は 2×10^{9} Torr 以下である。GaAs 基板と Ge_{1-x}Mn_xTe の格子 不 整 合 は ~ 5% あ る た め、GaAs より Ge_{1-x}Mn_xTe に格子定数が近い ZnTe をバッフ ァー層に用いた薄膜も作製した。

Nd₂BiFe_{5-x}Ga_xO₁₂磁性ガーネット薄膜

Nd₂BiFe_{5-x}Ga_xO₁₂ 磁性ガーネット薄膜の作 製は有機金属塗布熱分解(MOD)法により、 石英ガラス、Gd₃Ga₅O₁₂(GGG)(100)、(001) 基板上に作製した。主な作製条件は、望みの 組成に調合された溶液を基板上にスピンコ ートし、乾燥(100)、仮焼成(450)を5 回繰り返したのち、本焼成(700)を行っ た。

スピン・ゼーベック効果を測定するための Pt 電極はスパッタリング法により 10nm 堆積 させた。

(2) 測定方法

スピン・ゼーベック効果、異常ネルンス ト効果の測定

磁場中で試料に温度差を付けて測定する スピン・ゼーベック効果、異常ネルンスト効 果の測定については、室温、または極低温か ら室温まで測定可能な測定装置を新たに開 発した。

本実験では、スピン・ゼーベック効果、異 常ネルンスト効果、共に、薄膜試料の膜厚方 向に温度勾配を設け、それと垂直方向の膜面 内に磁場を印加した。スピン・ゼーベック効 果に関しては、温度勾配、磁場方向と互いに 垂直方向に膜面上部に設けた白金細線の両 端で起電圧を測定した。また、異常ネルンス ト効果は、温度勾配、磁場方向と互いに垂直 方向での膜端部間の電圧を測定した。

磁気特性の測定

磁気特性については、磁性ガーネットはキュリー温度が室温以上にあるので、振動試料型磁力計(VSM)で測定し、Ge_{1-x}Mn_xTe薄膜は超電導量子干渉型(SQUID)磁力計により 測定した。

その他の諸性質の測定

作製した薄膜の結晶学的性質や構造はX 線回折測定、走査型電子顕微鏡(SEM) 走 査型原子間力顕微鏡(AFM)などで調べた。 また、磁性半導体である Ge_{1-x}Mn_xTe 薄膜につ いては、ホール効果の測定も行い、キャリア 密度、移動度、抵抗率、ホール抵抗率なども 測定した。

4.研究成果

(1) スピン・ゼーベック効果、異常ネルンス ト効果の測定装置の開発

図1は開発したスピン・ゼーベック効果、 異常ネルンスト効果の測定装置である。この 測定台はHe冷凍機に設置され、~5Kから室 温までの温度範囲で測定が可能である。この 装置は薄膜試料のそれぞれ膜面方向、膜厚方 向に温度差を付けることができ、膜面に垂直、 平行方向に磁場を印可して、温度差、磁場に それぞれ垂直方向の起電力を測定すること ができる。また、温度差を付けない場合は磁 気抵抗、磁場を印可しない場合はゼーベック 効果、抵抗率などの測定も可能である。この ように、あらゆる測定が可能である測定装置 は、世界的に見ても多くはなく、今後の研究 において、大きな力を発揮できるものと期待

図2 低温、高温各部と温度差の時間変化

できる。

測定装置の温度制御はLabVIEWを用いて、 パソコンで制御している。図2は低温におけ る高温部、低温部、温度差の時間変化である。 図に示すように、低温においても、各部の温 度や温度差が一定に保たれており、スピン・ ゼーベック効果や異常ネルンスト効果の測 定の信頼性が保証されている。

(2) Nd_{3-y}Bi_yFe_{5-x}Ga_xO₁₂ 磁性ガーネット薄膜の スピン・ゼーベック効果

GGG 基板上への成長

いずれの Ga 組成 x、Bi 組成 yの磁性ガー ネット薄膜についても、GGG(100)、(111)基板 上には、共に、基板の面方位に沿った良好な 結晶が成長した。

磁気特性

図3(a)、(b)はそれぞれGGG(100)、(111)基 板上に成長したNd₂BiFe_{5-x}Ga_xO₁₂薄膜の室温 における磁化曲線である。磁場の印可方向は、 スピン・ゼーベック効果の測定における印可 磁場方向と同じ面内である。いずれの基板の 試料においても、結晶の磁化を担うFeを非 磁性原子のGaで置換することにより、試料 の飽和時価が減少している。

試料の磁化容易軸は、いずれの基板の試料 についても面内である。磁性ガーネットの磁 化容易軸は<111>方向であるので、いずれの 試料についても面内にある<111>方向へ磁化

図3 Nd₂BiFe_{5-x}Ga_xO₁₂薄膜の磁化曲線

が向いているものと思われる。しかし、Ga 組成 x が増加に伴う飽和磁化の減少に伴って、 反磁界が減少して<111>方位へ成長した試料 は膜面に垂直の<111>方向への磁気異方性が 強まったものと考えられる。<100>方位へ成 長している試料については、反磁界の減少に 伴って、磁化の垂直成分が誘起されているが、 これは薄膜と基板との格子不整合のために 薄膜の格子が歪んだことによる成長磁気異 方性によるものと考えられる。

スピン・ゼーベック効果

GGG(100)、(111) 基板上に作製した Nd₂BiFe_{5-x}Ga_xO₁₂薄膜の縦型スピン・セーベッ ク効果による起電力の磁場依存性を図4(a)、 (b)にそれぞれ示す。スピン・ゼーベックの起 電力のヒステリシスの形状は磁化曲線の形 状と同じで、磁化に関係したNd₂BiFe_{5-x}Ga_xO₁₂ 薄膜から流入するスピン流に依存した起電 力を観測していることが考えられ、スピン・ ゼーベック効果による起電力の測定がおこ なわれていることが確かめられた。

Ga 組成 x の増加に伴って、飽和したスピン・ゼーベック効果による起電力が減少しているが、これは、非磁性原子 Ga の増加(磁性原子 Fe の減少)に伴う Pt 界面でのスピン・ミキシング・コンダクタンスの低下によるものと考えられる³⁾。

また、<111>成長した試料に比べて、<100> 成長した試料の起電力が大きいのは、<100>

(b) <111>成長

成長した試料の方が結晶性が良好であったか、面方位によって、Pt 界面でのスピン・ミキシング・コンダクタンスの違いによるものかは、今のところ明らかになっていない。

Nd と Bi の比を変化させた GGG(100)基板 上に<100>方位に成長した Nd_{3-x}Bi_xFe₅O₁₂薄膜 については、Bi 組成 x が増加するにつれて, スピン・ゼーベック効果による起電力が増加 した。これは、Bi 組成 x が増加するにつれて 結晶性が向上したことによるものと考えら れる。

(2) Ge_{1-x}Mn_xTe 磁性半導体薄膜の異常ネルス ト効果

GaAs 基板上への成長

GaAs(100)基板上には、Ge_{1-x}Mn_xTe 薄膜の (100) 面 が 成 長 し 、 GaAs(111) 基 板 上 の ZnTe(111)バッファー層上には(111)面が成長 した。それぞれの薄膜の格子定数から求めた 組成は共に *x*=~0.4 であった。

磁気特性、磁性輸送特性

SQUID 磁力計、異常ホール効果により測定

(b) <111>成長

図 5 Ge_{1-x}Mn_xTe 薄膜のネルンスト電圧 の磁場依存性

した<100>、<111>方位に成長した Ge_{1-x}Mn_xTe 薄膜のキュリー温度は、共に 110~120K とほ ぼ同じ値を示した。これらの値は、キュリー 温度の組成依存性から求めたキュリー温度 とほぼ一致している。

なお、抵抗の温度特性は、<100>、<111>方 位に成長した試料について、共に、温度が上 昇するにつれてわずかに抵抗が上昇する、金 属的なふるまいを示すが、<100>方位に成長 した試料は低温で抵抗がわずかに上昇して いる。また、<100>方位に成長した試料の抵 抗率の値は $1.6 \times 10^{-3}\Omega$ cm(キャリア密度: 2.2 × 10^{-21} cm⁻³、移動度: 1.75cm²/Vs)であるのに 対して、<111>方位に成長した試料は $3.0 \times$ $10^{-4}\Omega$ cm(キャリア密度: 5.4×10^{-21} cm⁻³、移動 度: 3.83cm²/Vs)で、約 1 桁程度抵抗が低く なっている。これらの試料の磁気特性はほぼ 同じと思われるが、輸送特性は異なっている ものと考えられる。

異常ネルンスト効果

図 5 (a)、(b)はそれぞれ<100>、<111>方位 に成長した Ge_{1-x}Mn_xTe 薄膜のネルンスト電圧 の地場依存性である。また、図には SQUID 磁力計で測定した 5K の磁化曲線も示してあ る。<100>に成長した試料では、ネルンスト

(b) <111>成長

電圧は磁化曲線と同様の地場依存性を示し、 温度が上昇するにつれて、その値が小さくな っている。しかし、<111>方位に成長した試 料では、低温では磁化曲線と反対のヒステリ シスを示すが、温度が上昇するにつれて、そ のヒステリシスが反転し、磁化曲線と同じ極 性を示す。図6は飽和したネルンスト電圧の 温度依存性を示す。また、図には異常ホール 抵抗の温度依存性も合わせて示してある。異 常ホール抵抗は温度上昇とともに磁化の温 度依存性を反映して小さくなっている。極性 は磁 化曲線と同で、温度に依らず極性は反 転していない。しかし、<111>方位に成長し た試料のネルンスト電圧は低温で反転して いる。

このネルンスト電圧の温度依存性を Mott の関係式と Boltzmann 輸送方程式により解析 を行った。Mott の関係式より、異常ネルンス ト電圧 V_{ANE} は次式で示される 4 。

$$V_{ANE} = \frac{\rho_H}{\rho_0} \left(T \frac{\pi^2}{3} \frac{k_B^2}{e} \frac{\lambda'}{\lambda} - (n-1)S_0 \right)$$
(1)

ここで、 ρ_{μ} はホール抵抗、 ρ_0 、 S_0 は無磁場 中の抵抗率、ゼーベック係数である。この式 の中で n は ρ_{μ} が依存する ρ_0 のべき乗の指数 あるが、 $Ge_{1,x}Mn_x$ Te の場合、 ρ_H は ρ_0 の2 乗 に比例しており、磁場中の散乱は n=1 のスキ ュー散乱よりも n=2 のサイドジャンプ散乱が 支配的であることが示されている⁵⁾。したが って、この式より、異常ホール電圧が反転す る可能性が示唆される。

(1)式の中の無磁場での抵抗率 ρ_0 とゼーベック係数 S_0 を金属であるとして Boltzmann 輸送方程式より求めて代入すると、異常ネルンスト電圧はホール抵抗率 ρ_μ と温度Tの積に比例することが導ける。この関係式より、<100>方位に成長した試料については、高温側では、温度上昇に伴うホール抵抗率の減少によって、ネルンスト電圧は減少するが、低温側では、温度の低下に伴って、ネルンスト電圧が減少する。ただし、低温側でのネルンスト電圧の上昇は、GaAs 基板の熱伝導率の上昇に伴う $Ge_{1-x}Mn_x$ Te 薄膜の温度差上昇が考えられる。

しかし、<1111>方位に成長した試料に見られるネルンスト電圧の反転は、式中のゼーベック係数 S₀が低温で異常に大きくなるフォノン・ドラッグ効果が原因であることが考えられる。Ga_{1-x}Mn_xAsにおいても、フォノン・ドラッグ効果による低温でのゼーベック係数の増大が見られる試料がネルンスト電圧の反転を示しており⁴⁾、Ge_{1-x}Mn_xTeについても同様の機構が働いているものと考えられる。

<引用文献>

K. Uchida, S. Takahashi, K. Harii, J. Ieda, W. Koshibae, K. Ando, S. Maekawa, E. Saitoh, Obseravation of the spin Seebeck effect, Nature, Vol.455, 2008, 778-781

M. Mizuguchi, S. Ohata, K. Uchida, E. Saitoh, K. Takanashi, Anormalous nernst effect in an L1₀-ordered epitaxial FePt thin film, Applied Physics Express, Vol.5, 2012, 093002-1 ~ 3 K. Uchida, T. Nonaka, T. Kikkawa, Y. Kajiwara, E. Saitoh, Longitudinal spin Seebeck effect in various garnet ferrites, Physical Review B, Vol.87, 2013, 104412-1 ~ 6

Y. Pu, D. Chiba, F. Matsukura, H. Ohno, J. Shi, Mott relation for anomalous Hall and Nernst effects in $Ga_{1-x}Mn_xAs$ ferromagnetic semiconductors, Physical Review Letters, Vol.101, 2008, 117208-1 ~ 4

福間康弘、Gel-xMnxTe薄膜の成長とその 磁気的特性に関する研究、博士論文、2002

5.主な発表論文等

〔雑誌論文〕(計1件)

<u>H. Asada</u>, A. Kuwahara, N. Sakata, T. Ono, T. Ishibashi, A. Meguro, T. Hashinaka, <u>K. Kishimoto</u>, <u>T. Koyanagi</u>, Longitudinal spin Seebeck effect in Nd₂BiFe_{5-x}Ga_xO₁₂ prepared on gadolinium gallium garnet (001) by metal

organic decomposition method、Journal of Applied Physics, 査読有、Vol.117、2015、 17C724-1~3、DOI:10.1063/1.4914361

〔学会発表〕(計5件)

西村 謙佑、河野 有輝、植田 善幸、<u>浅田</u> <u>裕法、岸本 堅剛、小柳 剛</u>、GaAs 基板上 への Ga_{1-x}Mn_xTe 成長におけるバッファー 層の効果、第 64 回電気・情報関連学会中 国支部連合大会、2013 年 10 月 19 日、岡 山大学(岡山県岡山市北区)

坂田 直文、桑原 惇、西村 謙佑、<u>岸本 堅</u> <u>剛、浅田 裕法、小柳 剛</u>、Ga_{1-x}Mn_xTe 薄膜 の異常ネルンスト効果、第 61 回応用物理 学会春季学術講演会、2014 年 3 月 17 日、 青山学院大学(神奈川県相模原市)

桑原 惇、坂田 直文、小野 達也、<u>浅田 裕</u> <u>法</u>、目黒 燎、箸中 貴大、婁 庚健、石橋 隆幸、<u>岸本 堅剛、小柳 剛</u>、第11回日本 熱電学会学術講演会、MOD法により作 製した塗布型Nd₂BiFe_{5-x}Ga_xO₁₂薄膜におけ る縦型スピンゼーベック効果、2014 年 9 月 29 日、(独)物質・材料研究機構(茨城 県つくば市)

<u>H. Asada</u>, A. Kuwahara, N. Sakata, T. Ishibashi, A. Meguro, T. Hashinaka, <u>K. Kishimoto</u>, <u>T. Koyanagi</u>, 59th Annual Conference on Magnetism and Magnetic Materials, Longitudinal spin Seebeck effect in Nd₂BiFe_{5-x}Ga_xO₁₂ prepared by MOD method, 2014 年 11 月 6 日、Hilton Hawaiian Village Conference Center (Honolulu, USA)

桑原 惇、<u>浅田 裕法</u>、婁 庚健、石橋隆幸、 <u>岸本 堅剛、小柳 剛</u>、第62回応用物理学 会春季学術講演会、MOD法により作製 した Nd 系磁性ガーネット薄膜における 縦型スピンゼーベック効果、2015 年3月 11日、東海大学(神奈川県平塚市)

〔図書〕(計0件)

- 〔産業財産権〕
- ○出願状況(計0件)

○取得状況(計0件)

6.研究組織

(1)研究代表者
小柳 剛(KOYANAGI, Tsuyoshi)
山口大学・大学院理工学研究科・教授
研究者番号:90178385

(2)研究分担者
岸本 堅剛(KISHIMOTO, Kengo)
山口大学・大学院理工学研究科・助教
研究者番号:50234216

浅田 裕法 (ASADA, Hironori) 山口大学・大学院理工学研究科・准教授 研究者番号: 70201887