# 科学研究費助成事業

平成 27 年 6 月 1 2 日現在

研究成果報告書

機関番号: 63902 研究種目: 基盤研究(C) 研究期間: 2012~2014 課題番号: 24561029 研究課題名(和文)LHDにおける電子バーンシュタイン波加熱の高度化

研究課題名(英文)Improvement of electron Bernstein wave heating in LHD

研究代表者

吉村 泰夫 (Yoshimura, Yasuo)

核融合科学研究所・ヘリカル研究部・准教授

研究者番号:90300730

交付決定額(研究期間全体):(直接経費) 4,000,000円

研究成果の概要(和文):従来の電子サイクロトロン(EC)波を用いた加熱法では不可能であった波動の遮断密度以上 のプラズマ加熱を、プラズマ実験装置高磁場側からのEC波入射を可能とすることにより達成される電子バーンシュタイ ン波へのモード変換を利用して実現した。 また、大電力のEC波ビームがプラズマに吸収されなかった場合のLHD真空容器の損傷を防ぐためのインターロックシス テムを構築した。このインターロックシステムはLHDにおけるEC波を用いた定常実験の進展に大きく寄与し、2014年に は350kWのEC波電力で1.1×1019 m - 3の線平均電子密度、中心電子温度2.5keV以上のプラズマを39分間維持出来た。

研究成果の概要(英文):Heating plasmas with the electron density higher than the cut-off density of electron cyclotron (EC) heating waves was realized, by enabling the injection of EC-waves from high magnetic field side so that the EC waves are mode-converted to the electron Bernstein waves. An interlock system which prevent the possible damage of LHD vacuum vessel caused by non-absorbed high power EC-waves was constructed. The interlock system greatly contributed to the progress of steady state plasma sustainment by EC-waves. In 2014, a high performance plasma with the line average electron density of 1.1×1019 m - 3 and the central electron temperature of over 2.5keV was stably sustained by 350kW EC-wave for 39 min.

研究分野:プラズマ理工学

キーワード:電子サイクロトロン波 トオフ 定常プラズマ 電子バーンシュタイン波 モード変換 高密度プラズマ プラズマ加熱 カッ



### 1. 研究開始当初の背景

プラズマの生成・加熱のために、プラズマ 中の電子の磁場中での回転運動の周波数と 同じ又はその数倍の周波数を持つ電磁波(電 子サイクロトロン波)が用いられており、特 に第二高調波の異常波および基本周波数の 正常波は加熱効率が高く従来から利用され ている。しかし異常波または正常波には、遮 断と呼ばれる、用いる電磁波の周波数に依存 した伝搬の密度上限が存在する。このため、 遮断密度以上の高密度プラズマに対しては、 異常波や正常波を用いることが出来ない。ま た異常波や正常波は電子温度が高いほど効 果的に加熱出来るという特性を持っている。 一方、電子バーンシュタイン波と呼ばれる波 動には遮断が存在せず、また温度の高くない 電子に対しても良好な加熱特性を持つ。しか しプラズマ外部から入射した電磁波により 容易に励起出来る異常波や正常波と異なり、 静電波である電子バーンシュタイン波はプ ラズマ中でのモード変換により励起しなけ ればならず、理論的にはその有効性が指摘さ れていたにもかかわらずこれまで実現が難 しいとされてきたが、ドイツのステラレータ ー型プラズマ実験装置であるベンデルシュ タイン 7-AS における 1997 年の加熱実証を 機に、電子バーンシュタイン波加熱は高密度 プラズマの加熱法として大きな注目を集め て来ている。他のトカマク型装置や核融合科 学研究所の中型のヘリカル型装置 CHS にお いても電子バーンシュタイン波加熱の研究 が進められ、O-X-B 法および遅波 X-B 法によ るプラズマ加熱が実現している。ここで O-X-B 法とは正常波(Ordinary wave) 一異 常波 (eXtraordinary wave) — electron Bernstein wave の二段階のモード変換手法 で、電子サイクロトロン波入射の容易な装置 外側の弱磁場側から正常波を入射し、プラズ マ遮断層での反射の際モード変換され生じ た異常波が、さらに高域混成共鳴層で電子バ ーンシュタイン波にモード変換されるもの である。 遅波 X-B 法では異常波を基本共鳴磁 場よりも磁場強度の強い強磁場側から入射 し、それが高域混成共鳴層で電子バーンシュ タイン波にモード変換される。

核融合科学研究所の大型ヘリカル装置 LHDにおいても、平成21-23年度の科学研 究費補助金 基盤研究(C)課題番号 21560862「LHDにおける電子バーンシュ タイン波加熱」(研究代表者 吉村泰夫)に より設置した真空容器内ミラーを用いて遅 波X-B法の実証実験を開始した。異常波の強 磁場側からの入射により、加熱に用いている 77GHzの電子サイクロトロン正常波のプラ ズマ遮断密度7.4×10<sup>19</sup>m<sup>-3</sup>および異常波の 左回り遮断密度14.7×10<sup>19</sup>m<sup>-3</sup>を上回る高 密度のプラズマ中心領域(~17×10<sup>19</sup>m<sup>-3</sup>) においても電子温度の上昇が観測され、また 同時にプラズマの蓄積エネルギーも上昇し ていることから、モード変換による電子バー ンシュタイン波加熱の原理実証に成功した。 一方この原理実証実験後に、ステンレスで 製作した高磁場側入射用ミラー表面に溶融 による損傷が認められた。これは電子サイク ロトロン波入射による発熱と LHD プラズマ からの通常の入熱に加え、ミラーを貫通する 電子サイクロトロン波共鳴層でのプラズマ 生成によると考えられる入熱が原因と考え られた。さらに、除熱機構のないステンレス ミラーではビーム入射時間幅が数百ミリ秒 に制限されることから、本研究の更なる進展 のためにはミラーの改良が必要であった。

また、LHDでは近年電子サイクロトロン波 加熱システムの増強が進み、電子サイクロト ロン波入射電力の増加およびパルス幅の伸 長が大きく進展している。それに伴い、密度 が薄く入射電力の吸収が十分でない場合や 入射中にプラズマが崩壊した場合などに電 力入射を続けることにより対向壁の損傷が 生じる場合があった。

## 2. 研究の目的

既に設置した真空容器内ミラーはステン レス製(融点1400度程度)であり、冷却機 構が無くまた真空容器内上部に設置してあ ることから、溶融による損傷とそれによるプ ラズマへの悪影響を避けるために、このミラ ーを使用した電子サイクロトロン波入射の パルス幅を 200 ミリ秒に制限している。し かし 200 ミリ秒のパルス幅では原理実証は 出来ても放電時間が数秒にわたる LHD プラ ズマのパラメータ向上につなげるのは難し い。そこで本研究では新たに高融点金属であ るタングステン (融点 3380 度) 製の真空容 器内ミラーを製作·設置することで1秒以上 のパルス幅の遅波 X-B 加熱を実現し、LHD プ ラズマの最高蓄積エネルギーや最高中心電 子密度の達成など、マクロなプラズマパラメ ータの向上に寄与することを目的とする。

また電子サイクロトロン波入射の適切な 制御のため、FPGA (Field Programmable Gate Array: プログラム可能な集積回路)シ ステムを導入する。FPGA システムのプログ ラミングとセットアップを行う。電子サイク ロトロン波のパルス長設定値よりも早くプ ラズマ放電が異常終了した場合の電子サイ クロトロン波の入射停止、プラズマ生成のた めに電子サイクロトロン波を入射したにも かかわらず所定の時間内にプラズマが生成 できなかった場合の入射停止、プラズマの密 度が所定の値を下回った場合の入射停止・密 度が回復した場合の入射再開などの機能を 持つ入射制御システムを構築し、LHD の電子 サイクロトロン波加熱システム全体の高度 化を図る。

#### 研究の方法

既設アンテナシステムからの電子サイク ロトロン波を反射させることで装置の高磁 場強度側から異常波をプラズマに入射し、か

つ秒オーダーの入射時間を確保するために、 高融点素材であるタングステンを用いた真 空容器内ミラーを設計・製作し、既設ステン レス製ミラーとの交換を行った。設計に当た っては、設置済みのステンレス製真空容器内 ミラーを用いた遅波 X-B 加熱手法の原理実証 実験から得た知見を基にした。既設のステン レス製ミラーの寸法が角度の異なる3枚のミ ラーを組み合わせておおよそ 15cm×40cm であったのに対し、ミラーが基本波共鳴層を 横切らないように、新たなタングステン製ミ ラーは15cm×20cmのもの1枚とした。新 ミラーについても既設ミラーと同様に温度 を監視するために、ミラー背面の3カ所に熱 電対を取り付け、実験中のミラー温度を監視 可能とした。この熱電対信号の情報はミラー 温度の監視のみならず、ミラーに対する電子 サイクロトロン波入射位置の確認にも利用 可能とした。

設置するタングステン製真空容器内ミラ -を用いて、LHD においても原理実証され た高磁場側入射の電子サイクロトロン波に よる遅波 X-B 加熱手法をさらに進展させ、 プラズマパラメータの向上への寄与を目指 す。プラズマへの電子サイクロトロン波入射 方向はミラー設置角度によりほぼ一方向に 決まり固定されていることから、電子バーン シュタイン波の吸収位置を変化させるため にはプラズマの電子密度や磁気軸位置をス キャンして調整する。高密度プラズマを生 成・維持するスーパーデンスコアプラズマ実 験において、プラズマの維持に重要と考えら れているプラズマ周辺部の温度上昇を遅波 X-B 法を適用することで実現し、さらにはこ の電子温度上昇によって、維持可能なプラズ マ密度の更なる増加を実現する。高蓄積エネ ルギーの達成を目的とした LHD 実験に対し ては中心加熱の遅波 X-B 法を適用し、LHD プラズマの最高蓄積エネルギーの達成を目 指す。

また、電子サイクロトロン波の入射制御シ ステムを構築した。このために、AandD 社 のシングルボード Linux コンピュータ FPGA システム AD7011-EVA を用いた。FPGA シ ステムへの入力信号として、LHD プラズマ の線平均電子密度信号と酸素分光信号、およ び大電力電子サイクロトロン波の発振源で あるジャイロトロンへのアノード印加電圧 信号を用いた。それぞれ、プラズマの電子密 度の高低、プラズマ崩壊のタイミング、電子 サイクロトロン波入射の有無の判断に用い ている。FPGA のプログラミングにより、電 子サイクロトロン波入射開始後所定の時間 内にプラズマ生成が出来なかった場合、プラ ズマ維持中にプラズマが崩壊した場合およ び線平均電子密度が所定の値を下回った場 合の入射停止、およびその後密度が回復した 場合の入射再開の機能を持つ入射制御シス テムを作成した。各判断のための閾値はタッ チパネルへの入力またはパソコンを用いた 通信により、実験状況に応じて容易に変更可 能とした。本システム構築により、大電力入 射短パルス実験・長パルス定常実験共に安全 な電子サイクロトロン波入射が可能となっ た。

これら真空容器内新ミラーおよび電子サ イクロトロン波入射制御システムを用いて、 LHD において遅波 X-B 加熱実験および長時 間放電実験を行う。

### 4. 研究成果

遅波 X 波から電子バーンシュタイン波へ のモード変換を利用した高磁場側入射 X 波 加熱手法による LHD プラズマの高性能化を 実現するため、まず線平均電子密度と加熱入 カを抑制してターゲットプラズマを維持し、 重畳入射する遅波 X 波の効果を際立たせる ための実験を行った。LHD の上部ポートか ら入射する別の 77GHz 電子サイクロトロ ン波によりプラズマを生成し 1.6MW のイ オンサイクロトロン波加熱で維持した線平 均電子密度 1.2×10<sup>19</sup>m<sup>-3</sup> のプラズマに対 し、プラズマ維持加熱入力の 50%弱となる 0.76MW の電子サイクロトロン波電力を、 LHD の外側ポート(2-0 ポート)から真空 容器内ミラー経由の高磁場側入射 X 波(遅) 波 X 波)として入射した。遅波 X 波の入射



図 1. イオンサイクロトロン波加熱で維持し た線平均電子密度 1.2×10<sup>19</sup>m<sup>-3</sup>のプラズマ に対する~90%の高加熱効率の遅波 X-B 加熱 の実現。遅波 X-B 加熱適用前後の、上:プラ ズマ蓄積エネルギー(赤)と線平均電子密度 (青)の時間変化、下:電子温度分布の変化(青 が適用前、赤が適用後)。

直前には時間的に減少傾向にあり162kJで あったプラズマ蓄積エネルギーは入射開始 とともに増加に転じ、入射終了時には約1.4 倍の220kJに達した。また電子温度も全域 にわたって顕著に上昇している。その加熱効 率は91%と評価され、高効率の遅波X-B加 熱が実現された。(図1)。

ターゲットプラズマの線平均電子密度を 1.5 から9×10<sup>19</sup>m<sup>-3</sup>まで変化させ、加熱位 置の密度依存性を調べる実験を行った。ター ゲットプラズマは 5.4MW の中性粒子入射 加熱で維持し、追加熱として0.76MW の遅 波X波を5Hzの100%電力変調をかけて入 射した。加熱位置の同定は多チャンネル電子 サイクロトロン波放射(ECE)計測データの 解析結果から行った。図2にECE 信号の変 調振幅分布および変調伝搬の位相分布を示 す。変調振幅分布が最大となり、かつ位相分



図 2. 遅波 X-B 加熱電力吸収位置の密度依存 性。上図は ECE 信号の変調振幅分布、下図は 変調伝搬の位相分布を示し、ターゲットプラズ マの線平均電子密度の上昇と共に加熱位置が プラズマ中心側に移動していることが分かる。

布で最低となる位置が加熱電力吸収位置を 示している。密度の増加にともない、1.5× 10<sup>19</sup>m<sup>-3</sup>で規格化小半径ρ~0.7であった加 熱位置は徐々にプラズマ中心側へ変化し、7 ×10<sup>19</sup>m<sup>-3</sup>ではρ~0.4 となった。遅波X波 から電子バーンシュタイン波へのモード変 換位置・モード変換後の電子バーンシュタイ ン波の伝播経路の変化によるものと考えら れる。

また、大電力の電子サイクロトロン波ビー ムがプラズマに吸収されなかった場合の LHD 真空容器の損傷を防ぐためのインター ロックシステムを構築したことは特に長時 間入射設定を行う定常実験において重要で あり、LHD における電子サイクロトロン波 を用いた定常実験の進展に大きく寄与した。 2014年には350kWの電子サイクロトロン 波電力で 1.1×10<sup>19</sup>m<sup>-3</sup>の線平均電子密度、 中心電子温度 2.5keV 以上、中心イオン温度 1keV のプラズマを 39 分間維持し(図 3)、 それまでの電子サイクロトロン波電力 240kW、線平均電子密度 0.7×10<sup>19</sup>m<sup>-3</sup>、 中心電子温度 1.5keV、維持時間 30 分間の 記録を大きく更新することが出来た。図には 上から、電子サイクロトロン波入射電力、 39 分放電ではトムソン散乱計測による中心 電子温度の取得が出来なかったことからパ



図 3. 時間平均入射電力 350kW の電子サイ クロトロン波加熱単独で 39 分間安定に維持 された線平均電子密度 1.1×10<sup>19</sup>m<sup>-3</sup>、中心電 子温度 2.5keV 以上、中心イオン温度 1keV の プラズマ。上から、電子サイクロトロン波入射 電力、39 分放電ではトムソン散乱計測による 中心電子温度の取得が出来なかったことから パラメータとして同等な放電における中心電 子温度及び線平均電子密度、炭素・酸素・鉄か らの不純物放射強度、線平均電子密度及び中心 イオン温度の時間発展。

ラメータとして同等な放電における中心電 子温度及び線平均電子密度、炭素・酸素・鉄 からの不純物放射強度、線平均電子密度及び 中心イオン温度の時間発展を示した。

以上に述べた成果について、以下に示すように、論文として公表し、また国内学会および国際会議において発表を行った。

5. 主な発表論文等 (研究代表者、研究分担者及び連携研究者に は下線)

〔雑誌論文〕(計 3 件)

① Y. Yoshimura 他、22 名中 1 番目、 Long-Pulse Plasma Discharges by Upgraded ECRH System in LHD、EPJ Web of Conferences、査読なし、Vol. 87、2015、 02020 、 DOI:10.1051/epjconf/20158702020

② <u>Y. Yoshimura</u>他、17名中1番目、 Electron Bernstein Wave Heating by Electron Cyclotron Wave Injection from High-Field Side in LHD、Nuclear Fusion、査 読あり、Vol. 53、2013、063004、 DOI:10.1088/0029-5515/53/6/06300 4

③ <u>Y. Yoshimura</u> 他、11 名中1番目、High Density Plasma Heating by EC-Waves Injected from High-Field Side for Mode Conversion to Electron Bernstein Waves in LHD、Plasma Science and Technology、 査読有、Vol. 15、2013、pp. 93-96、 DOI:10.1088/1009-0630/15/2/02

〔学会発表〕(計5件)

 Y. Yoshimura、Progress of Long Pulse Discharges by Electron Cyclotron Heating in Large Helical Device、8th IAEA Technical Meeting on Steady State Operation of Magnetic Fusion Devices, 2015年5月26-29日、奈良春日野国際フ ォーラム 甍(奈良県・奈良市)

 <u>Y. Yoshimura</u>、Progress in High Performance Steady State Plasma Operation in LHD、Plasma Conference 2014、2014年11月18-21日、新潟コ ンベンションセンター 朱鷺メッセ(新潟 県・新潟市)

 <u>③</u> Y. Yoshimura、Long-Pulse Plasma Discharges by Upgraded ECRH System in LHD、18th Joint Workshop on Electron Cyclotron Emission and Electron Cyclotron Resonance Heating、2014年4 月 22-25 日、 奈良県新公会堂(奈良県・ 奈良市)

④ Y. Yoshimura、Long-pulse plasma sustainment and high-density plasma heating by use of electron cyclotron waves in LHD、The 4th International Symposium of Advanced Energy Science、 2013年9月30日-10月2日、京都大学 宇治キャンパス おうばくプラザ(京都府・ 宇治市)

⑤ Y. Yoshimura、Progress in long-pulse plasma sustainment and high-density plasma heating by upgraded ECRH system in LHD、Joint 19th ISHW and 16th IEA-RFP workshop、2013年9月16-20日、イタ リア パドヴァ市

6.研究組織
(1)研究代表者
吉村 泰夫 (YOSHIMURA YASUO)

核融合科学研究所・ヘリカル研究部・准教 授

研究者番号:90300730