科学研究費助成事業

研究成果報告書

平成 26 年 6月 9日現在

機関番号: 1 6 2 0 1
研究種目: 挑戦的萌芽研究
研究期間: 2012 ~ 2013
課題番号: 2 4 6 5 5 1 3 2
研究課題名(和文)強誘電性液晶の自発分極を利用した異常光起電力効果
研究課題名(英文)Anomalous photovoltaic effect based on spontaneous polarization of ferroelectric liq uid crystals
研究代表者
舟橋 正浩 (Funahashi, Masahiro)
香川大学・工学部・教授
研究者番号:9 0 2 6 2 2 8 7
交付決定額(研究期間全体):(直接経費) 3,200,000 円 、(間接経費) 960,000 円

研究成果の概要(和文):フェニルターチオフェン骨格を有し、側鎖にデセニル基、ジシロキサン鎖、シクロテトラシ ロキサン環を有する化合物を合成した。これらの化合物は高温側で強誘電相であるキラルスメクティックC (SmC*)相を 示した。嵩高い環状シロキサン部位を有する化合物も、SmC*相を示した。これらの化合物の自発分極は100 nC/cm2を超 、SmC*相でのホール移動度は10^-4 cm2/Vsのオーダーで、あった。直流電圧印加後、電圧を0のして紫外光パルスを照 射したところ、逆向きに光電流が発生した。光電流の極性は、照射前の電圧の極性により反転した。世界で初めて、強 誘電性液晶中で異常光起電力効果を確認することに成功した。

研究成果の概要(英文): Ferroelectric liquid-crystalline (LC) phenylterthiophene derivatives bearing a dec enyl group, a disiloxane chain, and a tetracyclosiloxane ring has been synthesized. These compounds exhibi t a chiral smectic C (SmC*) phase, where its spontaneous polarization exceeds 100 nCcm-2. The hole mobilit ies determined by a time-of-flight method were on the order of 1x10-4 cm2V-1s-1. The compound having decen yl group exhibits an anomalous photovoltaic effect in the SmC* phase. It should be noted that even the com pound bearing a bulky cyclotetrasiloxane ring exhibit an enatiotropic SmC* phase. The compound bearing a d ecenyl chain exhibits anomalous photovoltaic effect in the SmC* phase. Under zer-bias, photocurrent in the reversed direction was generated when DC bias was aplied to the sample before light illumination. The pol arity of the zero-bias photocurrent was changed by the sign of the DC bias before the illumination.

研究分野: 複合化学

科研費の分科・細目:機能物質科学

キーワード: 液晶 液晶性半導体 強誘電性液晶 異常光起電力効果 オリゴシロキサン キラルスメクティック C 相 ホール輸送 自発分極 1.研究開始当初の背景

申請者はこれまで、世界に先駆けて、液晶 性を有する有機半導体(液晶性半導体)の開 発を行ってきた。申請者は液晶での電荷輸送 機構を詳細に検討し、高いキャリア移動度を 有する液晶性半導体の開発に成功した。さら に、液晶性半導体を用いて、溶液プロセスに よる電界効果型トランジスターの作製に成 功し(Adv. Mater., 19, 353-358 (2007), Appl. Phys. Lett., 91, 063515 (2007), Org. Electr., 10, 73-84 (2009))、液晶性半導体を用いたフレキ シブルな電界効果型トランジスターを作製 した (Org. Electr., 11, 363-368 (2010).)。申請 者が開発した液晶性半導体は溶液プロセス によるデバイス作製ができ、大幅な生産コス トの低減が可能である。

本研究提案では、強誘電性を示す液晶性半 導体を合成し、その液晶相において、外部電 場0での光起電力効果(異常光起電力効果) を検討する。Figure 1 に示すように、強誘電 性液晶相では、外部電場が0であっても、自 発分極による内部電場が存在するため、光励 起によりキャリアが生成し、効率的に正・負 両電極に輸送されるため、大きな光起電力効 果が期待できる。

Figure 1 強誘電性液晶における異常光起電 力効果の概念図

一方、従来の有機薄膜太陽電池の起電力は、 n-型半導体の還元電位(LUMO準位に対応) とp-型半導体の酸化電位(HOMO準位に対応)の差、あるいは、陽極と陰極のフェルミ レベルの差で決まっており、起電力は通常1 Vを越えることは困難である。強誘電性を有 する液晶性半導体では、自発分局による内部 電場を利用するため、大きな出力電圧・電流 が期待できる。

強誘電体の内部電界を利用した光起電力 効果は、無機強誘電体では検討されているが、 有機半導体ではほとんど検討されておらず、 強誘電性高分子に色素を添加した系(N. Tsutsumi, I. Fujii, T. Kiyotsukuri, *Polymer*, **36**, 719-724 (1995).)とトリフェニレン誘導体の 結晶(A. Sugita, K. Suzuki, and S. Tasaka, *Phys. Rev. B*, **69**, 212201 (2004).)が検討されたのみ であり、強誘電性液晶を使用した例はない。 有機強誘電体については、近年水素結合を利 用した強誘電性結晶が注目されている(S. Horiuchi, Y. Tokura, *Nature Mater.*, **7**, 357-366 (2008).)。しかし、この材料は結晶であり、薄 膜化は困難である。また、電荷輸送性や光起 電力効果は検討されていない。 2.研究の目的

通常の有機薄膜太陽電池においては、開放 電圧は n 型半導体の LUMO レベルと p 型半 導体の HOMO レベルの差で決まるため、1 V 以上の電圧を得るのは難しい。本研究課題 では 電子共役系を有する強誘電性液晶の 外部電場0での光起電力効果(異常光起電力 効果)を検討する。このような有機強誘電性 半導体を用いた太陽電池においては、開放状 熊(外部電場 0)においても、強誘電性液晶 の自発分極による内部電界を利用できるた め、高い光キャリア生成効率と高い開放電圧 が期待できる。まず、オリゴチオフェン骨格 をベースとした強誘電性液晶分子を合成す る。この分子の強誘電性液晶相での異常光起 電力効果を検討する。さらに、電子受容性の 増感色素を添加することにより、分光感度を 可視域に広げた太陽電池を作製する。

3.研究の方法

オリゴチオフェン骨格に、キラル側鎖と大き な双極子モーメントを有するフルオロフェ ニル基を導入した強誘電性液晶分子を合成 する。このような液晶分子は 共役系に起因 する電気伝導性と大きな双極子モーメント とキラリティーに由来する強誘電性を示す ものと期待できる。この分子の液晶性、強誘 電性、電荷輸送性を評価する。さらに、強誘 電性液晶相で外部電場0における光起電力効 果を検討する。さらに、分光感度を可視域に 広げるため、ペリレンテトラカルボン酸誘導 体やフラーレン誘導体などの有機色素を添 加し、分光感度を可視域に拡大し、太陽電池 への応用の可能性を検討する。H.24年度には 主に、液晶材料の合成を、H.25年度には、液 晶材料の物性評価を中心に研究を進める。物 性評価より得られた結果を分子設計にフィ ードバックし、分子構造の最適化を行いなが ら研究を進める。

4.研究成果 Scheme 1 に示すフェニルターチオフェン 誘導体 1-3 を合成した。

Scheme 1 強誘電性フェニルターチオフェン 誘導体 1-3 の分子構造

化合物 1-3 は高温側で強誘電相であるキラ ルスメクティック C (SmC*)相を示し、低温側 で SmG 相を示した。いずれの化合物も、 -100 まで冷却しても結晶化しなかった。相 転移温度を Table 1 に示す。嵩高い重合性の 環状シロキサン部位を有する化合物 3 も、エ ナンチオトロピックな液晶相を示したのは 興味深い。

Table 1 Phase transition temperatures (enthalpies/Jg⁻¹) of compounds 1-3

Compound 1 SmG 123 °C (15.2) SmC* 139 °C (15.2) Iso

Compound 2 SmG 112 °C (10.2) SmC* 122 °C (8.9) Iso

Compound **3** G -71 °C SmG 110 °C (15.2) SmC* 123 °C (15.2) Iso

Iso: isotropic phase; G: glassy smectic phase

化合物 1-3 は SmC*相において、直流電界 印加することによりらせん構造が消失し、電 界の極性を変えることによって、光学組織の 明暗が反転するという、強誘電性特融の電気 光学応答を示した(Figure 2)。三角波法により 自発分極を求めたところ、化合物 1 は、100 nC/cm²、化合物 3 は 150 nC/cm² という高い値 を示した。双極子モーメントの大きい C-F 結 合を分子内に有するためと考えられる。

Figure 2 Polarizing optical micrographs in the SmC* phases for compound **1** under the application of a (a) positive and (b) negative bias (± 1.5 V for 4 µm thick sample) as well as for compound **3** under the application of a (a) positive and (b) negative bias (± 5 V for 9 µm).

化合物1、3のSmC*相でのホール移動度を Time-of-Flight 法によって測定した。Figure 3 に示すように、非分散型の過渡光電流波形が 得られ、化合物1については、3×10⁻⁴ cm²/Vs、 化合物3については、1×10⁻⁴ cm²/Vsの値が得 られた。SmC*相では、ホール移動度は電界・ 温度に依存せず、一定の値を示した。アモル ファス有機半導体とは異なり、液晶相での分 子配向秩序のため、HOMO レベルの分散幅が 小さくなり、移動度の電界・温度依存性が現 れないものと考えられる。また、双極子モー メントが非常に強いにもかかわらず、移動度 の電界・温度依存性が現れなかった。これは、 アモルファス有機半導体とは異なり、SmC* 相では双極子モーメントが一方向に配列し ているため、双極子が形成する局所的な電界 が HOMO レベルの分散幅を広げないものと 考えられる。

SmG 相では分散型の電流減衰が見られる

のみで、キャリア移動度を求めることはでき なかった。また、電子に対する過渡光電流は 非常に微弱であり、電子移動度を求めること もできなかった。

Figure 3 Transient photocurrent curves for holes in the SmC* phases of (a) compound **1** at 130 °C (The sample thickness = 15 μ m) and (b) compound **3** at 120 °C (the sample thickness = 9 μ m).

化合物1は、SmC*相において、外部電界0 で、微弱ながらも光起電力効果を示した。 Figure 4(a)に、外部電界0での過渡光電流を 示す。直流電圧印加後、電圧を0に戻し、パ ルスレーザー(λ =356 nm, pulse duration 2 ns) を照射すると、電圧印加方向とは逆に光電流 が発生した。照射前の直流電圧の極性を反転 させると、発生する光電流の極性も反転した。 この現象はSmC*相では観測されるが、分子 の電界配向が凍結されているSmG相や分子 配向が存在しない等方相では起こらない。

Figure 4(b)に、±0.5V 印加時の過渡光電流 を示す。Figure 4(a)に示す外部電界 0 での光 電流の値と過渡光電流の形状とほぼ同じこ とが分かる。このことから、外部電界 0 にお いても、残留分極により、10³ Vcm⁻¹ 程度の内 部電界が発生しているものと考えられる。

この外部電界0での光起電力効果は強誘電 相の内部電界によってホールが輸送される ために起こる異常光起電力効果と考えられ る。

自発分極の値から、本来は、10⁵ Vcm⁻¹ を 超える内部電界が発生しても不思議ではな い。これは、電極界面付近では、液晶分子が 電極表面との相互作用により、配向し自発分 極が発生しているのに対して、バルクでは、 液晶分子がらせん構造を形成しようとする

Figure 8 (a) Photocurrent under zero bias after laser pulse (wavelength = 356 nm, pulse duration = 2 ns) illumination in the SmC* phase of compound **1** at 130 °C. Before the laser illumination, DC voltages of 0V, 20 V, and -20 V were applied to the sample with the thickness of 2 μ m for 1 min. (b) Transient photocurrent curves under DC biases of 0.5 V and -0.5 V in the SmC* phase of compound **1**.

5.主な発表論文等

(研究代表者、研究分担者及び連携研究者に は下線)

〔雑誌論文〕(計 3件)

- Y. Funatsu, A. Sonoda, <u>M. Funahashi</u>, "Ferroelectric liquid crystal bearing terthiophene moiety", *Trans. Mater. Res. Soc. Jpn.*, **38**,373-375 (2013).
- M. Funahashi, T. Ishii, A. Sonoda, "Temperature-independent hole mobility of a smectic liquid-crystalline semiconductor based on band-like conduction", *ChemPhysChem*, 14, 2750-2758 (2013).
- M. Funahashi, Y. Funatsu, T. Ishii, A. Sonoda, "Temperature-independent hole mobility in an ordered smectic phase of phenylterthiophene derivative and a columnar phase of perylene tetracarboxylic bisimide derivative", *Proceedings of IDW 13'*, 40-43 (2013).
- 4. *M. Funahashi*, "Design of liquid-crystalline electronic functional materials through

nanosegregation", Proc. SPIE, 8475, 84750E (2012).

- 5. <u>舟橋正浩</u>、「Time-of-Flight 法によるキャリ ア移動度の測定」、液晶, **17**, 55-66 (2013).
- 〔学会発表〕(計 5件)
- Y. Funatsu, A. Sonoda, <u>M. Funahashi</u>, "Photoelectronic properties of terthiophene-based ferroelectric liquid crystals", 14th International Conference on Ferroelectric Liquid Crystals 2013 (FLCC 2013), Magdeburg, 2013/9/2-6,
- <u>M. Funahashi</u>, A. Sonoda, "Electron transport of liquid-crystalline perylene tetracarboxylic bisimide bearing disiloxane and triethylene oxide chains complexing with lithium triflate", 14th International Conference on Ferroelectric Liquid Crystals 2013 (FLCC 2013), Magdeburg, 2013/9/2-6
- <u>M. Funahashi</u>, Electronic Functions of Nanostructured π-conjugated Liquid Crystals International Meeting on Information Displays 2013 (IMID 2013), Daegu, 2013/8/26-28
- 船津佑介、苑田晃成、<u>舟橋正浩</u>、ターチ オフェン骨格を有する強誘電性液晶の電 子物性、第 3 回CSJ化学フェスタ 2013年10月21日-23日 東京
- 81津佑介、苑田晃成、<u>舟橋正浩</u>、強誘電 性液晶の内部電界を利用した異常光起電 力効果、日本化学会第94回春季年会、 2014年3月27日-30日名古屋

〔図書〕(計 1件)

 松浦和則、角五彰、岸村顕広、佐伯昭紀、 竹岡敬和、内藤昌信、中西尚志、舟橋正
 浩、矢貝史樹「有機機能材料 基礎から
 応用まで」 講談社 2014 年 3 月 20 日

〔産業財産権〕 取得状況(計 1件)
名称:ペリレンテトラカルボン酸ビスイミド
誘導体、n-型半導体の製造方法、および、電子装置
発明者:舟橋正浩、竹内望美
権利者:香川大学
種類:特許
番号:5515069
取得年月日:2014年4月11日
国内外の別: 国内

〔その他〕 ホームページ等 <u>http://www.eng.kagawa-u.ac.jp/~m-funa/F</u> <u>unahashi_2010_Top.html</u>

6.研究組織 (1)研究代表者 舟橋正浩 (FUNAHASHI, Masahiro) 研究者番号:90262287