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Probabilistic derivation of asymptotic estimates of heat kernels and study of
convex inequalities
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1. Brascamp-Lieb

1. The Brascamp-Lieb inequality has importance in statistical mechanics, such as
in the analysis of interface models. We give a simple proof of the inequality based on stochastic
analysis; as an application of our method, also derived are error estimates of the inequality and its
extensions to nonconvex potentials.

2. We recover the principle terms in asymptotic estimates for tail probabilities of first hitting times
of Bessel process in a relatively simple manner based on the weak convergence of probability measures;
sharp asymptotics of remainder terms are also derived.

3. We clarify sufficient conditions for expectations of the Feynman-Kac type with singular potentials to
diverge in the following three cases: Brownian motion, symmetric stable process, and Brownian motion in
the half-space with singular potentials on the boundary.
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