科学研究費助成事業

研究成果報告書

平成 28 年 6月 8 日現在 機関番号: 11501 研究種目: 若手研究(B) 研究期間: 2012~2015 課題番号: 24750026 研究課題名(和文)スペクトル解析を容易にする常磁性物質の固体重水素NMR法の開発 研究課題名(英文)Development of deuterium NMR spectroscopy of paramagnetic solids for simplification of spectral analysis 研究代表者 飯島 隆広 (Takahiro, lijima) 山形大学・基盤教育院・准教授 研究者番号:20402761

交付決定額(研究期間全体):(直接経費) 3,400,000円

研究成果の概要(和文):重水素核の固体NMRは、試料中の分子の静的構造のみならず、秒~ナノ秒程度のタイムス ケールの分子運動を調べることのできる極めて有力な分光法である。しかし対象物質が常磁性化合物である場合、スペ クトルの解析が困難、または不可能になるという問題があった。本研究では、常磁性化合物において、常磁性の影響を 除去してみなりたいを見ための新見ないが見た。これにより、常磁性固体においても重水素核NMRか ら分子の静的・動的構造を容易に解析することが可能になった。

研究成果の概要(英文):Deuterium solid state NMR spectroscopy is an indispensable tool for investigating not only the static molecular structure but also dynamics with a time scale from nanoseconds to seconds. For paramagnetic solids, however, the analysis of measured NMR spectra may be difficult or impossible owing to a paramagnetic shift interaction. In the present work, we developed novel deuterium NMR methods to remove the paramagnetic effect from the spectrum, which enables us to obtain information about molecular structure and motions easily.

研究分野:物理化学

キーワード: 核磁気共鳴 固体 常磁性 重水素

1. 研究開始当初の背景

固体NMRは物質分子の局所的な構造 を非破壊で解析できる分光法であり、登場し て約 45 年が経過した現在もまだ新たな測定 方法の開発が続々と行われている。固体NM Rの中でも重水素核 (²H, I=1)のNMR は、分子の静的構造だけでなく、秒~ナノ秒 程度のタイムスケールの分子運動を調べら れる貴重な手法である。重水素NMR法は測 定対象が反磁性か常磁性であるかにより大 別でき、これまでの研究の大部分はポリマー やゼオライト等を対象とする前者である。後 者は配位高分子等の興味ある系があるにも かかわらず、それらを対象にした重水素NM Rの研究例はほとんどない。我々は常磁性化 合物の静的・動的構造を重水素NMRで解析 するための一連の手法の開発を目指し研究 を推進している。

さて、常磁性体の重水素NMRでは、核 スピン相互作用として核四極相互作用に加 え、核と不対電子の電子スピンとの磁気的相 互作用(常磁性シフト相互作用)が大きく寄 与する。そのため常磁性体のNMRには反磁 性体で用いる測定法や解析法が通用しない。 これまでに常磁性体の重水素NMR法はい くつか開発されており、それらは(i)NMRス ペクトル取得に関する基礎的な方法、(ii)常磁 性シフトを正確に見積もる方法、に分類でき る。(i)は常磁性シフトの存在を考慮し、スペ クトルを歪みなく或いは高感度に得る方法 である。(ii)は常磁性シフトを二次元分離する 測定法や詳細に数値解析する方法である。こ れらの方法により、常磁性体の重水素NMR は原則的に可能となる。しかしながら、実際 にはそれを構造解析に応用した研究は極め て少ない。その原因は以下であると考えられ る。つまり、常磁性の場合はスペクトルの解 析には不対電子に関する様々な知見(空間的 位置、スピン状態、g-テンソルの成分)が必 要なので、反磁性の場合に比べ解析が格段に 難しくなることである。

2. 研究の目的

本研究では従来とは異なる立場、特に上 記(ii)とは逆の立場をとり、(iii)常磁性シフト を除去する方法、を開発する。即ち、重水素 NMRにおいて真に取得したい核四極相互 作用だけを残し、容易にスペクトル、そして 分子構造を解析することを目指した。

3. 研究の方法

本研究においては、常磁性シフトの影響 を除去し得るパルス・シーケンスの設計が必 要である。そこで、まず、核スピンの密度行 列の時間発展を理論計算し、所望のスペクト ルが得られるようなパルス照射法を検討し た。

次に、設計されたパルス・シーケンスが 正しく動作するかを実験で確かめた。実験に あたっては、高強度ラジオ波パルスを照射可 能なプローブを作成し、NMR 測定に供した。

得られたスペクトルを数値シミュレー ションすることにより、相互作用パラメータ や固体サンプル中の分子運動の速度定数(ま たは相関時間)が十分な精度で求められるか を検証した。

4. 研究成果

図1に、常磁性化合物の²H NMR で通常の 一次元スペクトルを測定するためのパル ス・シーケンス (PIQE) と、本研究で設計し たパルス・シーケンス (APIQE, APIQE2) を 示す。PIQE 法は四極子エコー法 (90°- τ -

図 1: 本研究で用いられたパルス・シーケ ンス. (a) PIQE, (b) APIQE, (c) APIQE2. (a)には期待されるコヒーレンス移動経路 も示した.

90°-τ-acq)のτの中点に 180°パルスを 挿入したものであり、これによりコヒーレン ス (p) の符号を反転させ、常磁性シフトの 影響を補償する。簡単のため、以下の理論計 算では無限大強度のパルスを仮定し、インコ ヒーレントな過程を無視する。90°パルス照 射直後の密度行列 $p_0 = -I_y = -i(T_{1,1} + T_{1,-1})$ は、2つの経路 0→+1→-1→+1→-1 と 0→-1 →+1→+1→-1 を経て、PIQE のエコー $p(t_2=0)$ = $-iT_{1,-1}$ を生ずる。信号観測時の磁化の時間 発展は、核四極相互作用および常磁性シフト の角周波数をそれぞれ a_{t} , a_{t} とすると

 $\rho(t_2) = (-iT_{1,-1}\cos \omega_{t_2} t_2 + 2^{1/2}T_{2,-1}\sin \omega_{t_2}) \\ \times \exp[i\omega_{t_2}]$

となる。このことは、スペクトルが非対称の 線形になることを示している。

我々の目的はρがω、だけの時間発展となるシーケンスの設計である。そのためには (i)四極子エコーのパルス間隔が非対称になるように90°パルスを配置すること、および (ii)各パルス間隔の中点に180°パルスを配 置すること、が必要である。これを満たすの が APIQE および APIQE2 である。観測時の密 度行列は APIQE および APIQE2 でそれぞれ次のように計算される。

 $\rho(t_1, t_2) = -iT_{1,-1}\cos(\omega_t t_1 - \omega_t t_2)$ $\times \exp[i\omega_b t_2] \quad \text{for APIQE,}$ $\rho(t_1, t_2) = -iT_{1,-1}\cos(\omega_t t_1 + \omega_t t_2)$

×exp[$i a_i t_2$] for APIQE2. 余弦の中の $a_i t \pm a_i t_2$ の干渉を回避するには 両者を重ね合わせればよい。

 $\rho^{+}(t_{1}, t_{2}) = -i2T_{1,-1}\cos(\omega_{t}t_{1})\cos(\omega_{t}t_{2})$ $\times \exp[i\omega_{t}t_{2}].$

二次元スペクトルの各軸への投影は、これらいずれの場合においても同じであり、直接

(F_2) 軸には四極子と常磁性が、間接(F_1) 軸には四極子のみが寄与する。従って、二次 元スペクトルの F_1 軸への投影により目的が 達せられる。

これを実証するためのNMR 測定を行った。 核四極相互作用は数百 kHz 程度の大きさを持 っため、プローブのサンプル・コイルは1 mm ϕ とし、強いラジオ波の照射を可能とした。

図 2 にモデル化合物の CoSiF₆・6D₂O を 用いて²H NMR 測定を行った結果を示す。

図 2: 常磁性 CoSiF6・6D2O における²H NMR スペクトル. (a), (b), (c)はそれぞれ APIQE, APIQE2, その和のスペクトル を表す. (i), (ii)はそれぞれ実測, シミュ レーションのスペクトルを示す. (ii)の破 線は常磁性の効果を考慮せずにシミュレ ーションした理論スペクトルを表す.

上記の理論計算から予想される通り、APIQE, APIQE2,およびその和のいずれの場合にも、 F1軸へのスペクトルの投影は同じであり、四 極子のみによる線形となった。また F2軸への 投影はいずれも四極子と常磁性の両方の寄 与による非対称なスペクトルとなった。 二次元スペクトルは、四極子と常磁性の寄与 を考慮することによりシミュレーションす ることができた。常磁性シフトについては、 X線で得られた構造データおよび磁化率測定 で得られたgテンソルの値を用いて共鳴核の 周りの 11³ 個の単位格子中の常磁性イオンか らの寄与を計算した。また、水分子の速い 180°フリップ運動を仮定した。その結果、 重水素の四極子パラメータとして(C₀, η_0) = (240±10 KHz, 0.05±0.05)が見積もられた。

F₁軸への投影は、常磁性シフトの効果を 考慮することなしに線形をシミュレーショ ンすることができた。図 2(ii)から分かるよ うに、常磁性の効果の有無で線形の違いはほ ぼない。従って、本法により、常磁性化合物 のスペクトルを反磁性化合物のスペクトル と同様に容易に解析することが可能となる ことが分かった。

次に、スペクトルの温度依存性を測定した。図3はCoSiF6・6D2Oにおける308-390

図 3: 常磁性 CoSiF₆・6D₂O における²H NMR スペクトルの温度依存性. (i)は実測 APIQE スペクトルのF₁軸への射影を, (ii) は常磁性シフトを考慮せずに計算したシ ミュレーション・スペクトルを表す. シミ ュレーションに用いた四極子パラメータ と[Co(D₂O)₆]²⁺イオンの再配向運動の速 度定数を(ii)の右に記す.

K の²H APIQE NMR スペクトルの温度変化であ る。この温度領域ではスペクトルの線形は $[Co(D_20)_6]^{2+}$ イオンの C_3 軸周りの再配向運動 によって変化する。水分子の運動は十分に速 い $(k_{flip} = 1 \times 10^9 \text{ s}^{-1})$ とし、 $[Co(D_20)_6]^{2+}$ イ オンの再配向運動の速度定数 $k_{re} \epsilon r \beta \rightarrow -$ タとしてシミュレーションを行った。その結 果が図 3(ii)である。分子運動がある場合、 スペクトルの信号強度は弱まるため多少の ずれは出るが、常磁性シフトの効果を考慮せ ずに実測スペクトルをシミュレーションすることができた。図4にシミュレーションの 結果見積もられた kreのアレーニウス・プロ

図 4: [Co(D₂0)₆]²⁺イオンの再配向運動の速 度定数 k_{re}の温度依存性.

ットを示す。フィッティングから $[Co(D_20)_6]^{2+}$ イオンの再配向運動の活性化エネルギーは 75 kJ mol⁻¹と見積もられた。これはこれまで に別な方法で得られた値と良い一致を示し た。

本研究ではさらに、マジック角回転を利 用する方法も開発した。試料を静磁場に対し マジック角(54.74°)で回転させるととも に、その回転に同期した 180°パルスを照射 することにより、常磁性シフトの影響を除去 した(PIRE法)。

図 5 に、重水素化した Nd の酢酸塩 Nd(OAc)₃の²H PIRE NMR スペクトルを、参照 サンプルである反磁性 $Zn(OAc)_2$ の結果と併 せて示す。 $Zn(OAc)_2$ は反磁性化合物であるた め、 F_1 軸と F_2 軸の投影スペクトルの線形はほ

図 5: (a)反磁性 Zn(OAc)₂ と(b)常磁性 Nd(OAc)₃の²H PIRE NMR スペクトル. (i), (ii)はそれぞれ実測およびシミュレー ションのスペクトルを表す.

とんど同じである。一方、Nd($(OAc)_3$ では、常磁性シフトの影響により F_2 軸への投影はブロードな線形になってしまっている。間接次元において常磁性の効果を除去することにより、 F_1 軸への投影で四極子のみによる線形を得ることができた。

二次元スペクトルは核四極相互作用と 常磁性シフトの両方を考慮することにより シミュレーションされるが、F1軸への投影は、 APIQE 法の場合と同様、核四極相互作用のみ の考慮で線形の解析が可能であった。

図 6 に APIQE 法および PIRE 法で測定した Nd (OAc)₃の²H NMR スペクトルを示す。PIRE

図 6: 常磁性 Nd(OAc)₃における純四極子 スペクトルの比較. (i) APIQE, (ii) PIRE.

法では相互作用をスケールしているため、信号強度は PIRE 法の方が APIQE 法に比べて 3 倍以上強かった。PIRE 法はマジック角回転を利用するため、温度可変の測定は APIQE 法の方が有利である。しかし、PIRE 法は市販のプローブで測定を行うことも可能であるため、測定温度範囲が許せば PIRE 法は常磁性化合物の²H NMR 測定の有力な選択肢となる。

本申請課題の研究期間中にアメリカの グループから類似の測定手法が発表された。 しかし、その方法は我々のAPIQE法に比べて 原理的に半分の信号強度しか出すことがで きない。少なくとも測定感度の点では、我々 の手法が優位にある。今後は本手法を興味あ る常磁性化合物の構造解析に適用していき たい。また、さらなる関連手法の開発も予定 している。

5. 主な発表論文等

〔雑誌論文〕(計3件)

- Takahiro Iijima, Toshihiro Yamase, (1)Katsuyuki Nishimura, "Molecular and electron-spin structures of ล ring-shaped polyoxovanadate(IV, V) studied by ¹¹B and ²³Na solid-state spectroscopy NMR and DFT calculations", Solid State Nucl. Magn. Reson. 76-77, 15-23 (2016). DOI: 10.1016/j.ssnmr.2016.03.004, 查読有.
- ② <u>Takahiro Iijima</u>, Tadashi Shimizu, Katsuyuki Nishimura, "²H NMR pure-quadrupolar spectra for

paramagnetic solids", J. Magn. Reson. 251, 57-64 (2015). DOI: 10.1016/j.jmr.2014.11.007, 査読有.

Takahiro Iijima, Toshihiro Yamase, (3) Masataka Tansho, Tadashi Shimizu, Katsuvuki Nishimura, "Electron localization of polyoxomolybdates with structure studied ε-Keggin by solid-state 95Mo NMR and DFT calculation", J. Phys. Chem. A 118, 2431-2441 (2014).DOI: 10.1021/jp409969g, 查読有.

〔学会発表〕(計7件)

- <u>飯島隆広</u>, "常磁性固体の²H NMR を容易に解析するために",第17回固体 NMR技術交流会/文部科学省ナノテクノロジープラットフォーム事業 NIMS 微細構造解析プラットフォーム 2015 年度第2回地域セミナー(招待講演),2016年3月16日,日本電子株式会社東京事務所(東京都千代田区).
- ② <u>飯島隆広</u>, "ポリ酸の固体 NMR-分子および d¹ 電子の構造解析-", 金沢大学特別講演会(招待講演), 2016 年 1 月 14日, 金沢大学(石川県金沢市).
- ③ <u>Takahiro Iijima</u>, Tadashi Shimizu, Katsuyuki Nishimura, "²H NMR pure-quadrupole spectra of paramagnetic solids", 19th International Society of Magnetic Resonance Conference (国際学会), 2015年8月16日~2015年8月21日, Shanghi (China).
- ④ <u>飯島隆広</u>,山瀬利博,西村勝之,"固体 NMR 及び量子化学計算によるリング状 ポリ酸の分子及び電子スピンの構造解 析",日本化学会第95春季年会,2015年 3月26日~2015年3月29日,日本大学 (千葉県船橋市).
- ⑤ <u>飯島隆広</u>,山瀬利博,丹所正孝,清水 禎, 西村勝之,"固体 ⁹⁵Mo NMR と DFT 計算 によるを·Keggin ポリ酸の電子局在性の 研究",日本化学会第 94 春季年会,2014 年 3 月 27 日~2014 年 3 月 30 日,名古 屋大学(愛知県名古屋市).
- ⑥ <u>飯島隆広</u>,"常磁性固体の四極子核 NMR", 高分子学会 13-2NMR 研究会(招待講演), 2013 年 12 月 13 日,東京海洋大学(東 京都港区).
- ⑦ <u>飯島隆広</u>,山瀬利博,丹所正孝,清水 禎, 西村勝之,"常磁性ポリ酸の固体 ⁹⁵Mo

NMR",第52回 NMR 討論会,2012年11 月8日~2012年11月10日,ウィンク 愛知 (愛知県名古屋市).

6. 研究組織

(1)研究代表者
飯島隆広(IIJIMA, Takahiro)
山形大学・基盤教育院・准教授
研究者番号: 20402761