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A relation histamine receptor and vascular permeability in the model of lung
microvascular with endotoxemia.
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During acute lung inflammation, the lung microvasculature becomes hyperpermeable,
resulting in immune cell infiltration and tissue edema. In this study, we examined the effects n-3 PUFAs
onlung microvascular cell permeability.Human Iun? microvascular endothelial cells (HWEC-L) were seeded
on fibronectin-coated transwell inserts. The cells were pretreated with docosahexaencic acid (DHA) or
eicosapentaenoic acid (EPA) (n-3 PUFAS), and then treated with LPS to simulate acute lung injury.
Pretreatment with DHA and EPA prior to LPS stimulation significantly attenuated LPS-induced cell
permeability. EPA decreased histamine receptor 1 (H1R) and mRNA expression following LPS stimulation.
Interleukin (IL)-6 mRNA expression in response to LPS treatment was significantly reduced by both DHA and
EPA pretreatment. DHA and EPA attenuated LPS-induced lung microvascular endothelial cell permeability
through a mechanism that may involve IL-6. EPA pretreatment may influence HI1R expression.
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Figure 1: Paracellular permeabifly as measured by the concentration of FITC-
albumin in the basal chamber.
| A) Sham (no LPE): White bars- confrol; gray bars- DHA, patterned bars- EPA,
| =7 samplesigroup, B) LPS-freated HMVEC-L: Black bars- LPS; dolted bars-
DHA+LPS, patterned bars- EPA+LPS. n=5 samples'group.
*p<0.05; **, p=0.01 vs. no PUFA confrol by Tukey-Kramer's post hoc best.
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Figure 2: The mRNA levels of parmeabilty-related genes. A} HIR mRNA, B)
Z3-1 mRNA, C) occludin mRNA, D) MMP-1 mRNA, E) endothelial-derived
VEGF mRNA, F) IL-5 mRMNA. White bars- no LPS; black bars- LPS-treated,
=3 samplesigroup.

* p<=0.05 ", p<0.01 vs. no PUFA by Tukey-Kramer's post hoc test.
1, p=0.05; 11, p=<0.01 vs. control by t-test.
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