科学研究費助成事業(基盤研究(S))研究進捗評価

課題番号	25220103	研究期間	平成 25 年度~平成 29 年度
研究課題名	環境中親電子物質によるシグナル 伝達変動とその制御に関する包括 的研究	研究代表者 (所属・職) (平成28年3月現在)	熊谷 嘉人 (筑波大学・医学医療 系・教授)

【平成28年度 研究進捗評価結果】

評価		評価基準		
0	A+	当初目標を超える研究の進展があり、期待以上の成果が見込まれる		
	A	当初目標に向けて順調に研究が進展しており、期待どおりの成果が見込まれる		
	A-	当初目標に向けて概ね順調に研究が進展しており、一定の成果が見込まれるが、一部		
		に遅れ等が認められるため、今後努力が必要である		
	В	当初目標に対して研究が遅れており、今後一層の努力が必要である		
	С	当初目標より研究が遅れ、研究成果が見込まれないため、研究経費の減額又は研究の		
		中止が適当である		

(意見等)

環境化学物質の解毒機構の解明は、環境学の重要な一分野である。本研究は、環境中親電子物質の解毒に関わるレドックスシグナル伝達機構と、この伝達系における活性イオウ分子 (RSS) の役割を解明することを主な目的としている。これまでに標的蛋白質の化学修飾検出法の開発、用量依存的なシグナル伝達系の変動、RSS としてのパースルフィドの重要性の解明、ノックアウトマウスを用いた RSS の生体防御作用の証明等が達成されている。

研究は計画以上に良好に進捗し、学術雑誌への公表、国際学会での発表も活発に行われており、今後 も順調に進展して行くものと期待できる。