科学研究費助成事業

平成 2 9 年 6 月 1 1 日現在

研究成果報告書

機関番号: 17102 研究種目: 基盤研究(B)(一般) 研究期間: 2013~2016 課題番号: 25286003 研究課題名(和文)三元系コア・シェル金属ナノ微結晶の創成と触媒応用

研究課題名(英文)Syntheses of trimetallic nanocrystals and their catalytic applications

研究代表者

让 正治(TSUJI, Masaharu)

九州大学・炭素資源国際教育研究センター・学術研究員

研究者番号:30038608

交付決定額(研究期間全体):(直接経費) 15,200,000円

研究成果の概要(和文):近年、多元系金属ナノ微粒子は一元系微粒子とは異なる優れた特性を示すことから、 その合成法の開発と応用に関する研究が活発に行われている。本研究では、新規三元系コア・シェル微結晶をサ イズ・形状選択的に合成し、新規触媒材料として応用することを目的として研究を実施した。その結果、Au@Pd@ Agナノ微結晶の場合はPd-Ag層間で低温で合金化によりAu@PdAg@Agがエピタキシャル成長すること及びそれがPd 層の不均一歪によることを明らかにした。また室温でギ酸分解による水素発生能を有するAgPd@Pd/TiO2触媒微粒 子や高い酸素還元能力を有するPtxY/carbon燃料電池触媒の開発にも成功した。

研究成果の概要(英文): Recently, extensive studies have been carried out on the syntheses and applications of polymetallic nanoparticles because they have unique electric, optical, magnetic, and catalytic properties which are absent in monometallic particles. In this study, we attempted to prepare new trimetallic nanoparticles for their catalytic applications. We succeeded in the preparation of Ag@PdAg@Ag nanorods and clarified their unique epitaxial growth mechanism involving alloying between intermediate Pd and outer Ag layers. Alloying between Pd and Ag layers were explained by ununiform distortion of Pd layers. We also succeeded in syntheses of AgPd@Pd/TiO2 catalysts for hydrogen production from decomposition of formic acid at room temperature and PtxY/carbon catalysts for oxygen reduction reaction in fuel cells. The latter catalysts are useful for the application to fuel cell vehicle in the near future.

研究分野:ナノマテリアル化学

キーワード: 三元系金属 コア・シェル微結晶 触媒 低温合金化 マイクロ波加熱 エピタキシャル成長

1.研究開始当初の背景

(1) 金属ナノ微粒子は、量子サイズ効果によ リバルクとは異なる電気的、磁気的、光学的、 化学的特性を示すため、ナノテクの基本材料 として注目されている。これらの諸特性は微 粒子のサイズ、形状、組成に依存するため、 これらを制御した合成法の開発が期待され ている。申請者らはサイズ、組成、形状の全 てを制御した二元系金属ナノ微粒子の合成 法の開発を、内側のコア(中心殻)とそれを 覆う外殻(シェル)構造から成る金コア・銀 シェル (以下 Au@Ag と略)の合成を中心に 行ってきた。その結果、Au コアの形状と還 元溶媒を制御することにより、Ag シェルの 構造を一対一にエピタキシャル成長させる ことに世界に先駆けて成功した。1,2)その後、 二元系のコア・シェル微結晶の形状選択的合 成に関する系統的研究を実施した。一般にシ ェルをコアに対してエピタキシャル成長さ せるためには、コアとシェル間の格子不整合 は約 5%が限界と信じられていた。申請者ら はポリオール法の条件を最適化すると、格子 不整合が11.4%や13.6%と5%を大きく超える Au@Cu や Au@Ni でも、コア・シェル微結晶 のエピタキシャル成長は可能であることを 示した。^{3,4)}また Au@Cu 微粒子の Cu シェル の耐酸化特性は Au コア存在下で向上するこ とを見出している。三つの元素から成る三元 系コア・シェル金属ナノ微粒子は、上記の二 元系微粒子と比較して、さらに優れた特性を 発現することが期待されるが、ほとんど研究 されていない。

2.研究の目的

(1) 本研究の目的は、これまで二元系金属コ ア・シェル微結晶の合成で蓄積した様々な技 術を駆使して、新規三元系コア・シェル微結 晶のサイズ・形状選択的合成法を開発すると ともに結晶成長機構を解明することにある。 さらに合成した微粒子をカーボンや TiO₂等 に担持させることで高い触媒特性を有する 材料を開発することが目的である。

(2) 三元系コア・シェル微粒子に関する研究 では、Au@PdAg@Ag ナノロッド(NR)の合成 と結晶成長機構について検討した。また触媒 応用に関する研究では、AgPd@Pd/TiO₂, Pt_xY/carbon 微粒子を合成し、それぞれギ酸分 解による水素発生および燃料電池の酸素還 元反応に応用した。本報告書では得られた結 果の代表例として Au@PdAg@Ag NR と AgPd@Pd/TiO₂ 触媒に関する研究成果を述べ る。Pt_xY/carbon 触媒については、将来の燃料 電池自動車への応用が可能な高活性触媒の 開発に成功し、トヨタ自動車や豊田中央研究 所と共同で特許出願した。

(3) 水素エネルギーは化石燃料に代わる新たなエネルギー源として注目されており、燃料電池技術と組み合わせることで、低炭素社

会実現への応用が期待されている。しかし、 水素は常温・常圧で気体であるため貯蔵や輸 送に莫大なスペースが必要であり、このこと が水素燃料電池自動車などの普及のための 課題となっている。この課題を解決するため の技術の一つとして、液体燃料であるギ酸か らオンサイトで水素を生成する技術が注目 されている。このようなギ酸分解からの水素 生成用触媒として、Ag@Pd ナノ微粒子が室温 で高い活性を示すことが報告されている。5) この Ag@Pd 触媒の高い触媒活性は、仕事関 数が小さい Ag コア(4.7 eV)から仕事関数が 大きい Pd シェル(5.1 eV)への電子移動によ り発現すると考えられている。本研究ではマ イクロ波 (MW) 加熱により Ag@Pd ナノ微 粒子を Ag と比べて仕事関数が、さらに小さ い TiO₂ ナノ 微粒子 (4.0 eV) 上に 担持 する こ とで、TiO2から Pd シェルへの電子移動を促 進し、触媒活性の向上を目指した。また、触 媒合成時の溶媒や加熱時間など実験条件や ギ酸分解時の触媒への UV-Vis 光照射効果を 検討し、Ag@Pd/TiO₂ ナノ微粒子のさらなる 触媒活性の向上を試みた。

3.研究の方法

(1) Au@Pd@Ag ナノ微粒子は、以下の 2 段 階で合成した。

Au@Pd NR の合成:市販の Au NR,四塩 化パラジウム酸,アスコルビン酸(還元剤), CTAB(表面保護剤),蒸留水を混合し、40°C で5時間撹拌して合成した。

Au@PdAg@Ag NR の合成: Au@Pd NR, 硝酸銀,アスコルビン酸(還元剤),水酸化ナ トリウム,蒸留水を混合し、60°Cで9時間 撹拌して合成した。

得られた 微粒子の構造評価は、TEM, TEM-EDS, SAED, XRD, 紫外-可視吸収スペ クトル法を用いて行った。また反応時間 10, 30 分と 1~9 時間で試料のサンプリングを行 い、微粒子成長過程を観察した。

(2) TiO₂担持 AuPd@Pd 微粒子は MW 加熱を 用いて合成した。担体として用いた TiO₂ナノ 微粒子は,1-5 ペンタンジオールにチタンテ トライソプロポキシドを加え、MW 装置(μ Reactor,四国計測工業)中で撹拌しながら加 熱して合成した。続いて、溶媒としてエチレ ングリコール(EG)または水を用い、以下の二 段階の MW 加熱によって AgPd@Pd/TiO₂ナノ 微粒子触媒を合成した。

再分散した TiO₂ナノ微粒子を加えた EG または蒸留水分散液に硝酸銀、ポリビニルピ ロリドン(表面保護剤)を溶解した溶液を、Ar ガスでパブリングしながら MW 加熱し、Ag, TiO₂ 微粒子混合液を作製した。

作製した Ag, TiO₂ 微粒子混合液に、硝酸 パラジウムを溶解した EG または水溶液を添 加し、400 W の出力で MW 加熱することで Ag@Pd/TiO₂ナノ微粒子を作製した。 (3) ギ酸分解時の初期水素生成速度は,室温 水中でギ酸(0.25 M, 20 mL)を分解した際の生 成ガス量の経時変化から導出した。また UV-Vis 照射の光源としては朝日分光社製の 300 W キセノンランプ(300-600 nm)を用いた。

4.研究成果

 Au@PdAg@Ag ナノロッド(NR)の合成と 結晶成長機構に関する研究結果を(1)-(4)に AgPd@Pd/TiO₂の合成とギ酸分解水素発生触 媒への応用に関する結果を(5)-(7)に示す。

図 1、2 に Au@Pd ナノロッド(NR)に Ag⁺ を 還元させ、反応時間 10 分,9 時間後に得られ た微粒子の TEM, TEM-EDS 像, ライン分析結 果を示す。Ag⁺を 10 分間還元しても微粒子の 形状変化は確認されなかった(図 1)。EDS 像からは、Pd シェルが Ag と合金化している ことが明らかになった。これは、Pd ナノ微粒 子存在下で Ag⁺を還元させると、60 °C という 低温でも、Au@Pd@Ag コアシェル構造を形 成することなく、PdAg 合金シェルを有する Au@PdAg NR が形成されることを示す初め ての結果である。

(2) 反応時間9時間では、Au@PdAg NR と比べて粒子サイズが大きい微粒子が得られた(図2)。EDS 像から、Pd シェルが Ag と合金化し、PdAg 合金シェルの長軸面に Ag がブロック状に成長した Au@PdAg@Ag ナノ微粒

図 1. AgNO₃ 添加、加熱 10 min 後の TEM, TEM-EDS 像、(a) TEM 像, (b) Au 成分, (c) Pd 成分, (d) Ag 成分, (e) Au+Pd+Ag 成分, (f) 図 (e)の , 間のライン分析とAu@PdAg構造

図 2. AgNO₃ 添加、加熱 9 h 後の TEM, TEM-EDS 像、(a) TEM 像, (b) Au 成分, (c) Pd 成分, (d) Ag 成分, (e) Au+Pd+Ag 成分, (f) 図 (e)の , 間のライン分析とAu@PdAg@Ag 構造

図 3. Au@PdAg@Ag ナノ微粒子の生成機構

子が得られたことがわかった。微粒子成長過 程の観察から、Ag ブロックの形成はロッド の多面で均一に同時に起こるのではなく、1 面のみから起こっていることが示唆された。 本研究結果をまとめると、Au@PdAg@Ag NR は図3に示すように、まず Ag⁺が Pd シェル 面上で還元後 PdAg 合金シェルを形成し、そ の後 PdAg 合金シェル中の Ag 濃度が限界固 溶度(約15%)を超えると、Ag がブロック状に エピタキシャル成長するという特異な機構 で生成することが示唆された。

(3) Pd-Ag 間の合金化での Pd シェルの形状 依存性を調べるために、ダンベル形状の Au@Pd NR を合成し、同様に Ag⁺を還元させ た。その結果、Au@PdAg@Ag ナノ微粒子の 生成が観察され、PdAg 合金シェルの Ag 固溶 度(約 25%)はダンベル形状の方が直方体形状 (約 15%)と比べて高いことがわかった。これ は、XRD の結果からダンベル形状の Au@Pd NR の方が直方体のものより Pd の不均一格子 歪が大きく、Ag の Pd シェル内への侵入が容 易なためと考えられる。

(4) 本研究により高次結晶面を有する Au NR 存在下で Au@Pd NR を合成後、Ag⁺を還元させると、最初に PdAg 合金シェル層が低温で形成され、その後、合金シェル上に Ag がブロックを形成しながら成長するという新規三元系コア・シェル微結晶の成長機構を見出した。

(5) AgPd@Pd/TiO₂ の合成とギ酸分解水素発 生触媒への応用に関する結果として、図 4a に作製した Ag@Pd/TiO₂ 微粒子の模式図を示 す。高分解電子顕微鏡観察より厚さ 0.5 nm の Pd シェルを有する平均粒径 7.0 nm の Ag@Pd 微粒子が TiO₂ 微粒子上に担持していること が確認された。なお Ag コアと Pd シェルは合 成時に一部合金化し、EG 中 30 分 MW 加熱の 場合には、コアは Ag から Ag₈₂Pd₁₈ 合金へ変 化することが XRD のピークシフトから確認 された。AgPd@Pd/TiO₂ 微粒子の粒径は、加 熱法や TiO₂単体の有無に依らず約 7 nm で一 定のものが得られた。

(6) 図 4b に MW 加熱とオイルバス加熱で合 成した AgPd@Pd/TiO₂ 触媒、および MW 加熱 で合成した TiO₂ 担体なしの AgPd@Pd 触媒を 用いた場合のギ酸からの H₂ ガス生成量の反 応時間依存性を示す。触媒の初期水素生成速 度は MW 加熱では 16 L g⁻¹h⁻¹、オイルバス加 熱では 12 L g⁻¹h⁻¹、TiO₂ 担体なしの触媒では 0.71 L g⁻¹h⁻¹ という値が得られた。この結果は AgPd@Pd 触媒の活性は、TiO₂ に担持するこ

図 4. (a) AgPd@Pd/TiO₂ 微粒子, (b) MW, オ イルバス加熱で合成した AgPd@Pd/TiO₂ の 27°C でのギ酸分解による H₂ ガス発生量の 時間変化

とで、それぞれ 23, 17 倍向上し、その効果は MW 加熱の方が顕著であることを示してい る。TiO₂ は半導体で MW をほとんど吸収しな いが、導電性の金属触媒は MW により局所加 熱され、TiO₂上により強固に坦持されること でTiO₂から Pd シェルへの電子移動を促進し、 触媒活性を向上させたものと考えられる。こ の結果は、MW 加熱は金属微粒子を TiO₂のよ うな金属酸化物の担体表面に坦持する場合 に有効な手法であることを示唆するもので ある。この触媒の活性は、Ag-Pd の合金化度 に強く依存し、反応溶媒を EG から沸点の低 い水に代えて合金化度の低い Ag₉₃Pd₇@Pd/TiO₂を合成すると、触媒活性は さらに 2.9 倍の 44 L g⁻¹h⁻¹ に増加した。

(7) TiO₂ 単体が光触媒であることに着目し Ag₉₃Pd₇@Pd/TiO₂ 触媒への紫外・可視光の照 射効果を調べた。その結果、光照射下では TiO₂ 光触媒表面に光電子が生成し、これが Pd シェルに移動し表面が電子リッチになるこ とで、触媒活性がさらに 1.7 倍の 70 L g⁻¹h⁻¹ に 向上することを見出した。上記の結果は、今 後、本触媒の実用化に向け重要な基礎データ を与えるものである。

<引用文献>

- 1) M. Tsuji et al., Cryst. Growth Des., 6, 1801 (2006).
- M. Tsuji et al., Cryst. Growth Des., 8, 2528 (2008).
- 3) M. Tsuji *et al., Cryst. Growth Des.*, **10**, 5129 (2010).

- 4) M. Tsuji et al., Cryst. Growth Des., **11**, 1995 (2011).
- 5) K. Tedsree, T. Li, S. Jones, C. W. A. Chan et al., Nat. Nanotech., 6 302 (2011).

5.主な発表論文等

〔雑誌論文〕(計44件)

Y. Uchida, <u>M. Tsuji</u> (4番目), <u>H. Ago</u> 他2名 "Epitaxial Chemical Vapour Deposition Growth of Monolayer Hexagonal Boron Nitride on Cu(111)/sapphire Substrate", *Phys. Chem. Chem. Phys.*, **19**, 8230-8235 (2017) 10.1039/c6cp08903h 查読有.

<u>M. Tsuji</u>, K. Uto 他 4 名, "Syntheses of Carbon Supported Pt-YO_x and PtY Nanoparticles with High Catalytic Activity for Oxygen Reduction Reaction by Microwave-Polyol Method", *ChemCatChem*, **9**, 962-970 (2017) 10.1002/cctc.201601479 查読有.

<u>M. Tsuji</u> "Microwave-Assisted Synthesis of Metallic Nanomaterials in Liquid Phase", *ChemistrySelect*, **2**, 805-819 (2017) 10.1002/slct.201700011 査読有.

T. Tsuji, I. Takade, <u>M. Tsuji</u>, N. Koshizaki, "Preparation of Gold Submicron-Sized Particles Using Laser Irradiation for Gold Nanoparticles Stabilized by Carbonate", *Electronics and Commun. Jpn.*, **99**, 64-70 (2016) 10.1002/ecj.11875 查読有.

<u>M. Tsuji</u>, <u>H. Ago</u> (5 番目) 他 3 名 "Enhancement of Catalytic Activity of AgPd@Pd/TiO₂ Nanocatalysts under UV & Visible Photoirradiation", *J. Mater. Chem. A*, **4**, 14649-14656 (2016) 10.1039/c6ta05699g 查読有.

Y. Takesaki, <u>M. Tsuji</u> (7 番目), <u>H. Ago</u>, 他 5 名, "Highly Uniform Bilayer Graphene on Epitaxial Cu-Ni(111) Alloy", *Chem. Mater.*, **28**, 4583-4592 (2016) 10.1021/acs.chemmater.6b01137 查読有.

<u>M. Tsuji</u> 他 2 名, "Hydrogen Production from Formic Acid Decomposition at Room Temperature: AgPd@Pd/TiO₂ Core–Shell Nanocatalyst Prepared by Microwave Heating", *Chimica Oggi*, **34**, 55-58. (2016) 查読有.

H. Ago, M. Tsuji (9 番目)他 7 名, "Visualization of Grain Structure and Boundaries of Polycrystalline Graphene and Two-Dimensional Materials by Epitaxial Growth of Transition Metal Dichalcogenides", ACS Nano, **10**, 3233-3240 (2016) 10.1021/acsnano.5b05879 查読有.

P. Solís-Fernández, <u>M. Tsuji</u> (4 番目), <u>H.</u> <u>Ago</u> 他 2 名, "Gate-Tunable Dirac Point of Molecular Doped Graphene", *ACS Nano*, **10**, 2930-2939 (2016) 10.1021/acsnano.6b00064 查読有. T. Tsuji, I. Takade, M. Tsuji 他 2 名 "Laser Melting in Liquids Using Gold Nanoparticles Stabilized by Na₂CO₃", J. Laser Micro/Nanoengineering, 10, 329-333 (2015) 10.2961/jlmn.2015.03.0017 査読有. M. Y. Rozan, H. Endoh, M. Tsuji, H. Ago, "Vertical Heterostructures of MoS2 and Graphene Nanoribbons Two-Step by Chemical Vapor Deposition for High-Gain Photodetectors". Phys. Chem. Chem. Phys., 25210-25215 17. (2015)10.1039/c5cp03958d 査読有.

<u>辻 剛志</u>,<u>辻 正治</u>(3番目)他2名,"炭酸 保護金ナノ粒子へのレーザー照射による 金サブミクロン粒子の作製",*電気学会 論 文 誌 C*, **135**, 1090-1095 (2015) http://doi.org/10.1541/ieejeiss.135.1090 査 読有.

<u>M. Tsuji</u> 他 3 名, "Formation of Rh Frame Nanorods by Using Au Nanorods as Sacrificial Template", *CrystEngComm*, **17**, 6955-6961 (2015) 10.1039/C5CE00357A 査 読有.

T. Tsuji, <u>M. Tsuji</u> (3 番目) 他 3 名, "Preparation of Submicron-sized Spherical Particles of Gold Using Laser-Ablation and Melting in Liquids and Low-Toxic Stabilizing Reagent", *Appl. Surf. Sci.*, **348**, 10-15 (2015) 10.1016/j.apsusc.2015.02.057 查読有.

H. Ago, M. Tsuji (7番目) 他 8名, "Growth Dynamics of Single-Layer Graphene on Epitaxial Cu Surfaces", *Chem. Mater.*, **27**, 5377-5385 (2015) 10.1021/acs.chemmater. 5b01871 査読有.

M. Tsuji, T. Tsuji (12 番目) 他 11 名, "Syntheses of Au@PdAg and Au@PdAg@Ag Core-Shell Nanorods via Alloying between Pd Shells and Ag Atom", J. *Phys. Chem. C*, **119**, 10811-10823 (2015) 10.1021/jp509340s 査読有.

M. Hattori, D. Shimamoto, <u>H. Ago, M. Tsuji</u>, "AgPd@Pd/TiO₂ Nanocatalyst Synthesis by Microwave Heating in Aqueous Solution for Efficient Hydrogen Production from Formic Acid", *J. Mater. Chem. A*, **3**, 10666-10670 (2015) 10.1039/c5ta01434d 査読有.

H. Ago, M. Tsuji (8 番目) 他 6 名, "Controlled van der Waals Epitaxy of Monolayer MoS₂ Triangular Domains on Graphene", ACS Applied Materials & Interfaces, **7**, 5265~5273 (2015) 10.1021/am508569m 查読有.

P. Solís-Fernández, M. A. Bissett, <u>M. Tsuji</u>, <u>H. Ago</u>, "Tunable Doping of Graphene Nanoribbon Arrays by Chemical Functionalization", *Nanoscale*, **7**, 3572-3580 (2015) 10.1039/c4nr07007k 査読有.

M. Hattori, <u>M. Tsuji</u>, (4 番目) 他 2 名, "Efficient Hydrogen Production from Formic Acid Using TiO₂-Supported AgPd@Pd Nanocatalysts", J. Mater. Chem. A, **3**, 4453-4461 (2015) 10.1039/c4ta06988a 査読 有.

- H. Ago, M. Tsuji (5番目)他3名, "Synthesis of High-Density Arrays of Graphene Nanoribbons by Anisotropic Metal-Assisted Etching", *Carbon*, **78**, 339-346 (2014) http://dx.doi.org/10.1016/j.carbon.2014.07.01 0 査読有.
- ② <u>M. Tsuji</u>, N. Nakamura 他 3 名, "Shape Evolution of Decahedral and Icosahedral Ag Flags and their Intermediates from Ag Nanorod Seeds in DMF Solution in the Presence of Polyvinylpyrrolidone", *J. Cryst. Growth*, **406**, 94-103 (2014) http://dx.doi.org/10.1016/j.jcrysgro.2014.08.0 15 查読有.
- ② M. A. Bissett, Y. Takesaki, <u>M. Tsuji</u>, <u>H. Ago</u>, "Significantly Increased Chemical Reactivity Achieved by Asymmetrical 'Janus' Functionalisation of Graphene", *RSC Advances*, **4**, 52215-52219 (2014) 10.1039/c4ra09724f 査読有.
- 24 M. Y. Rozan, <u>M. Tsuji</u> (3 番目), <u>H. Ago</u> (5 番目) 他 2 名, "Formation of Oriented Graphene Nanoribbons over Heteroepitaxial Cu Surfaces by Chemical Vapor Deposition", *Chem. Mater.*, 26, 5215-5222 (2014) dx.doi.org/10.1021/cm501854r 査読有.
- ② Y. Ogawa, <u>M. Tsuji</u> (4 番目), <u>H. Ago</u> (6 番目) 他 3 名, "Structure and Transport Properties of the Interface between Merged Hexagonal Domains in CVD Graphene Grown on Crystalline Cu Films", *Nanoscale*, 6, 7288-7294 (2014) 10.1039/c3nr06828e 査読 有.
- ② Y. Yoshida, <u>M. Tsuji</u> (4 番目) 他 2 名, "Synthesis and Growth Mechanism of Au@Cu Core-Shell Nanorods Having a High Antioxidative Property", *CrystEngComm*, 16, 5672-5680 (2014) 10.1039/c4ce00672k 查読 有.
- M. Tsuji, T. Tsuji (5番目)他4名, "Synthesis of Ag-Pt Alloy Triangular Nanoframes by Galvanic Replacement Reactions Followed by Saturated NaCl Treatment in an Aqueous Solution", *Mater. Lett.*, **121**, 113-117 (2014) http://dx.doi.org/10.1016/j.matlet.2014.01.093 査読有.
- ③ <u>M. Tsuji</u>, <u>T. Tsuji</u> (6番目) 他5名 "Syntheses of Ag-Au and Ag-Pd Alloy Triangular Hollow Nanoframes by Galvanic Replacement Reactions without and with Post-treatment Using NaCl in an Aqueous Solution", *CrystEngComm*, **16**, 2684-2691 (2014) 10.1039/c3ce42244e 查読有.
- 29 <u>M. Tsuji</u> 他 5 名 "Synthesis and Growth Mechansim of Ag-rich AgAu Alloy Triangular Prisms in an Aqueous Solution in the

Presence of PVP, Citrate, and H₂O₂", *CrystEngComm*, **15**, 7688-7695 (2013). 10.1039/c3ce41172a 査読有.

- ③ <u>M. Tsuji</u> 他 4 名 "Effects of Au Fraction on the Morphology and Stability of Au-Ag-Cu Trimetallic Particles Prepared Using a Polyol Method", *CrystEngComm*, **15**, 7062-7070 10.1039/c3ce40602d 査読有.
- M. Tsuji 他 6 名 "Formation of Au@Pd@Cu Core-Shell Nanorods from Au@Pd Nanorods through a New Stepwise Growth Mode", *CrystEngComm*, 15, 6553-6563 10.1039/c3ce40274f 査読有.
- ② <u>辻 正治</u> "マイクロ波加熱による金属微粒子、コア・シェル微粒子の合成", *金属、* 83, 673-679 査読有.

<u>M. Tsuji</u>, M. Hattori, D. Shimamoto, K. Uto, <u>H. Ago</u> "Hydrogen Generation from Formic Acid Decomposition by Using AgPd@Pd/TiO₂ Core-Shell Catalysts Prepared in Ethylene Glycol or Aqueous Solution", 2nd International Conference on Polyol Mediated Synthesis, 2016.7.11-13 (滋賀県彦根市).

<u>M. Tsuji</u>, M. Hattori, D. Shimamoto, <u>H. Ago</u> "Synthesis of AgPd Core Pd Shell Nanocatalysts Loaded on TiO₂ by Microwave Heating in Aqueous Solution for Efficient Hydrogen Production from Formic Acid", PACIFICHEM 2015, 2015.12.15-20 (ホノル ル(米国)).

<u>辻 正治</u>、中島幸範、矢島淳彦、服部真史 "Rh, Ptナノロッドフレームの合成と生成 機構",第9回分子科学討論会 2015.9.16-19 (東京都、東工大).

<u>辻 正治</u>"コアシェル型金属ナノ微粒子の 液相合成と触媒応用",第66回コロイドお よび界面化学討論会 2015.9.10-12 (鹿児島 県鹿児島市).

<u>M. Tsuji</u> "Syntheses and Application of Metallic Nanoparticles", Green Asia Symposium in Thailand 2015.3.11-3.13 (パン コク(タイ)).

<u>辻 正治</u> "Pd-Ag系金属ナノ微粒子の合成 とギ酸分解による水素発生触媒への応用", 第8回分子科学討論会2014 広島 2014.9.21-24 (広島県東広島市).

<u>M. Tsuji</u>, K. Takemura 他5名 "Syntheses of Au@PdAg and Au@PdAg@Ag Core-shell Nanorods through Distortion Induced Alloying between Pd Shells and Ag Atoms over Au Nanorods", International Symposium on Small Particles and Inorganic Clusters-XVII 2014.9.7-12 (福岡県福岡市).

<u>辻 正治</u> "金属ナノ微粒子の液相合成と応 用", 第51 回化学関連支部合同九州大会 2014.6.28 (福岡県北九州市).

〔図書〕(計 4件)

辻 正治 "マイクロ波加熱の基礎と産業用 第2章化学分野への応用、第3節マイクロ 波加熱による金属ナノ微粒子の合成と触 媒応用"査読有 (2017) R&D 支援センタ - 11頁 辻 正治"ナノ粒子の表面修飾と分析評価 技術 第2節第6項 マイクロ波加熱によ るナノ粒子の表面修飾及びその特性評価" pp. 72-76. 查読有 (2016) 株式会社 情報 機構 辻 正治、吉川 昇編集 "マイクロ波エネル ギーと応用技術、5章6-2金属ナノ粒子"、 pp. 558-562 查読有 (2014). (株) 産業技術 サービスセンター 〔産業財産権〕 出願状況(計 1件)

名称:燃料電池用電極触媒及びその製造方法 並びに燃料電池 発明者:永見哲夫、山本 亨、<u>辻 正治</u>、宇都 慶子、林 潤一郎、福島英沖 権利者:トヨタ自動車、豊田中央研究所 種類:特許 番号:特許願 2016-129709 号 出願年月日:平成28年6月30日 国内外の別:国内

取得状況(計 1件)

名称:コアシェル型金属ナノ粒子の製造方法 発明者:<u>辻 正治</u>,引野幸枝,佐野義之 権利者:国立大学法人九州大学,DIC 株式会 社 種類:特許 番号:特許第 5748957 号 取得年月日:平成27年5月22日 国内外の別:国内

〔その他〕 ホームページ等 http://cr.cm.kyushu-u.ac.jp/tsuji/

6.研究組織
(1)研究代表者
辻 正治(TSUJI, Masaharu)
九州大学・炭素資源国際教育研究センター・
学術研究員
研究者番号:30038608

(2)研究分担者
 辻 剛志(TSUJI, Takeshi)
 島根大学・総合理工学部・准教授
 研究者番号:50284568

(3)研究分担者
 吾郷 浩樹(AGO, Hiroki)
 九州大学・グローバルイノベーションセンター・教授
 研究者番号:10356355

[[]学会発表](計76件)