科学研究費助成事業

研究成果報告書

科研費

平成 2 8 年 6 月 7 日現在

機関番号: 33919 研究種目: 基盤研究(B)(一般) 研究期間: 2013~2015 課題番号: 25288041 研究課題名(和文)コロネンを用いたエキゾチック分子集合体の開拓

研究課題名(英文)Exotic Molecular Assemblies based on Coronene

研究代表者

吉田 幸大 (Yoshida, Yukihiro)

名城大学・農学部・助教

研究者番号:10378870

交付決定額(研究期間全体):(直接経費) 14,600,000円

研究成果の概要(和文):高対称多環芳香族炭化水素コロネンから成る電荷移動錯体の新規開発を推進した。 交互積層型中性錯体において、コロネン分子の回転挙動が積層内の分子配列と相関を持つことを見出した。 電解酸化により、世界初のコロネン陽イオン固体を開発した。有意な - 相互作用は持たず、分子性固体としては稀 有な立方晶系をとる。電荷不均一に起因して半導体的挙動を示したが、高い室温電導度(1.7 Scm-1)を有する。また 、 積層構造を有するコロネン陽イオン塩の開発にも成功した。グラファイトより短い面間距離を有し、半導体的挙動 を示した。この塩において、コロネン陽イオンの静的Jahn-Teller歪みの観測に世界で初めて成功した。

研究成果の概要(英文): Charge transfer complexes based on a highly symmetric (D6h) polycyclic aromatic hydrocarbon, coronene, were systematically prepared. For the mixed-stacked neutral complexes, we found that the dynamic properties of coronene molecules largely depend on the molecular arrangement within the stacks.

The first coronene cation solid was prepared by electrooxidation. The salt belongs to the cubic system, which is exceptionally rare among molecular solids, and has no face-to-face - interactions. It shows a high room-temperature conductivity (1.7 Scm-1), although exhibiting semiconducting behavior associated with the charge disproportionation.

In addition, we obtained the coronene cation salts with -stacking columns of coronene. The salts have interplanar distances shorter than that in graphite and show semiconducting behavior. For the salts, we succeeded in the first observation of a static Jahn-Teller distortion of coronene cations.

研究分野: 固体物性化学

キーワード: 多環芳香族炭化水素 軌道縮重 コロネン 電荷移動 超伝導 超分子ローター キャリア注入 分子 配列 1. 研究開始当初の背景

多環芳香族炭化水素(PAH) コロネン(図 1a) は、カルパチア石と呼ばれる有機鉱物として 産出し、土星の衛星タイタンにも存在するこ とが知られている。一方で、カーボンナノチ ューブやグラフェンの部分構造とも見なす ことのできるコロネンは、その高い対称性 (D_{6h})に起因した縮重フロンティア軌道(図 1c)をもつため、イオン性電荷移動(CT)錯 体を形成した場合には、強磁性的相互作用や フェルミ準位での高状態密度(高 T_c BCS 型超 伝導)が期待できる。有機分子を基盤とした 電子物性発現において最も汎用性が高く有 効な手法は分子間 CT 相互作用を利用するこ とであるが、コロネンを用いた CT 錯体の報 告例は非常に少ない。2010年にアルカリ金属 ドープ体(コロネンは-3価)の超伝導相(T. < 15 K) が報告されたが、大気に不安定で結 晶構造は不明である。酸化還元特性の観点か ら、コロネンは電子ドナー(D)と見なせる (E_{1/2}(D) = 1.23 V vs. SCE) にもかかわら ず、コロネンを電子ドナーとして用いた CT 結晶は、1:1 中性 TCNQ (図 1d) 錯体が1 例あ るのみである。

図1 (a) コロネン分子、(b) コランニュレン分子、(c) コロネン分子のフロンティア軌道、(d) TCNQ 誘導体 (R¹ = R² = R³ = R⁴ = H: TCNQ, R¹ = R³ = Me, R² = R⁴ = H: Me₂TCNQ, R¹ = R³ = OMe, R² = R⁴ = H: (MeO)₂TCNQ, R¹ = R² = R³ = R⁴ = F: F₄TCNQ)、(e) M(mnt)₂分子 (M = Ni, Pt)。

2.研究の目的

コロネンの高対称性を利用して、分子回転と 電子状態がカップリングした CT 型超分子ロ ーター(課題 1)や、軌道縮退に起因した高 T。超伝導体(課題 2)の開発を行う。課題 1 では、多彩な酸化還元特性を有する電子アク セプター(A)や陰イオンとの CT 錯体を開発 し、コロネン分子の集合形態や CT 相互作用 (電荷移動度)と回転挙動(回転速度、活性 化エネルギー)の相関関係を抽出する。さら に、GHz オーダーで回転するイオン性超分子 ローターを開発し、分子回転による電子物性 制御を実現する。課題2においては、高対称 陰イオンを用いてコロネンの軌道縮退が保 持された高対称陽イオンラジカル固体を系 統的に開発し、高 T。超伝導相を見出す。さら に、外場(静水圧、一軸歪圧、電界)印加や 化学ドーピング等による電子物性制御を行 いながら、T_c変化の調査ならびに電子相図の 作成を推進する。

研究の方法

拡散法、溶媒蒸発法、共昇華法、電解酸化法 等を駆使して、新規コロネン CT 錯体を系統 的に開発する。X線回折ならびに固体 NMR 測 定から、結晶構造(分子配列、分子間相互作 用)と分子回転挙動の相関関係を抽出する。 また、電気抵抗や静磁化率等の諸物性測定か ら、分子回転-電子物性カップリングならび に新奇電子相の探索を行う。

4. 研究成果

(1) 中性 CT 錯体の系統的開発(雑誌論文 ⑧):拡散法もしくは溶媒蒸発法により、9種 類の TCNQ 誘導体(図 1c)を電子アクセプタ ーとした計 11 種類の新規中性 CT 錯体を開発 した。うち 9 種類は 1:1 組成を有し、DA 型交 互積層構造(図 2a)を形成する。残り2種類 は、DDA 型交互積層構造(図 2b)を有する 2:1 錯体である。各錯体のCTエネルギー(hvcr) を、コロネンと TCNQ 誘導体の第1酸化還元 電位の差 ($\Delta E_{1/2} = E_{1/2}(D) - E_{1/2}(A)$) に対 してプロットした結果が図 2c である。いず れの錯体も Torrance によって提言された V 字曲線近辺にプロットされ、コロネンと TCNQ 誘導体間に CT 相互作用が存在することを確 認した。また、V 字曲線の中性側にプロット されることから、これら CT 錯体の基底状態 は中性であることが分かった。

図 2 (a) DA 型交互積層と(b) DDA 型交互積層(緑色: コロネン、赤色:TCNQ 誘導体)。(c) コロネン CT 錯体の Torrance V 字プロット。電子アクセプターは TCNQ 誘導 体 (\bullet) もしくは M(mnt)₂ (\blacktriangle)。TTF-TCNQ (TTF: tetrathiafulvalene) 系において金属的挙動(部分 CT 状 態)が観測された $\Delta P_{1/2}$ 領域を 2 本の点線で表す。V 字曲 線は TTF-TCNQ 系における理論曲線を表す。

(2) 低温駆動する超分子ローターの開発(雑 誌論文⑧):平面型錯陰イオン $M(mnt)_2^-$ (図 le; M = Ni, Pt)を用いた電解酸化により、 中 性 CT 錯 体 (coronene⁰)₅[Ni (mnt)_2⁰]₂-(CH₂Cl₂)₂ ならびに (coronene⁰)₃[Pt (mnt)_2⁰]-(CH₂Cl₂)₂を得た。図 2c に示すように両錯体 は V 字曲線の谷近傍にプロットされる。中性 -イオン性相転移の発現が期待されたが、静 磁化率測定では 2 K まで有意な磁気モーメン トは観測されなかった。両錯体はほぼ同形構 造であったために、以下では Ni (mnt)₂錯体に 焦点を絞って研究成果を報告する。

結晶中でコロネン分子は DDA 型交互積層を

形成しており、カラムの横にもコロネン分子 が存在する(図 3a)。カラム内のコロネン分 子対は ring-over-bond 型重なり様式を有し、 π 平面は平行ではなく 4.7°傾いている。こ の抑制された π - π 相互作用に起因して、100 K においても面内分子回転を示唆する大きな 熱揺らぎが観測された(図 3b)。

図 3c に固体 ^IH NMR スペクトルの温度依存 性を示す。低温では線幅が 30 kHz 以上のブ ロードなバンドが観測されるが、昇温すると 約 60 K以上で motional narrowing に由来す る線幅の急激な減少が確認された。これはコ ロネン分子の回転が 60 K まで維持されてい ることを意味しており、X 線回折測定で観測 された大きな分子面内熱揺らぎとも合致す る。本錯体は、低温でも安定に駆動する前例 のない CT 型超分子ローターである。

図 3 (coronene) $_{5}$ [Ni (mnt) $_{2}$] $_{2}$ (CH₂CI $_{2}$) $_{2}$ における(a) 分 子配列の模式図(緑色:コロネン、赤色:Ni (mnt) $_{2}$)、(b) DDA 交互積層内のコロネン分子(50%確率楕円体@100 K)、 (c) 固体 ¹H NMR スペクトルの線幅の温度依存性。

(3) 等方的 3 次元構造を有するコロネン陽イ オンラジカル塩の開発 (雑誌論文⑦): Q_{h} 対称 モリブデンハライドクラスター $Mo_{6}X_{14}^{2-}$ 陰イ オン (X = C1, Br)存在下での電解酸化によ り、(coronene) $_{3}Mo_{6}X_{14}$ を得た。これらは同形 構造を有するため、以下では (coronene) $_{3}Mo_{6}C1_{14}$ に焦点を絞り、研究成果を 報告する。

本錯体は、分子性固体としては稀有な立方 晶系(空間群 Pn3m)をとる。コロネン分子は 各結晶軸の中点に位置し、最近接の8つのコ ロネン分子(重心間距離は 9.6 Å)を通して 等方的な3次元 π 電子ネットワークを構築し ている(図 4a; 逆ペロブスカイト構造とみな すことができる)。各サイトでは、互いに分 子面内に 90 度回転した2種類のコロネン分 子が 1/2の確率で配位する。コロネン分子自 体は4回回転軸をもたないが、この "merohedral disorder"のために、空間群 から要請される疑似的な4回回転軸を形成し ている。本錯体は、超伝導体 A_3C_{60} (A: アル

カリ金属;空間群 *Fm*3m) 以外で merohedral disorder が確認された最初の例である。

ESR や光吸収分光測定から、本錯体中のコ ロネン分子はラジカル陽イオン種であるこ とを確認し、本錯体が世界初のコロネン陽イ オンラジカル固体であることを明らかにし た。Raman 散乱測定から A_{1g}モードの分裂が観 測された。このモードはコロネン分子の価数 と相関をもつため、A_{1g}モードの分裂は電荷不 均一状態を示唆している。

重水素化コロネン ($C_{24}D_{12}$; d_{12} -coronene) を用いて作成した (d_{12} -coronene) ${}_{3}Mo_{6}Cl_{14}$ の 163 K での固体 ${}^{2}H$ NMR スペクトルを図 4c に 示す。I = 1 核スピン由来の核四極子分裂を 示唆する粉末パターンが確認された。60 度フ リップ運動を仮定したシミュレーション解 析により、結晶中でコロネン分子は面内回転 しており、回転速度の異なる 2 つの回転種が 存在することが分かった。回転速度は 5 MHz と 300 MHz と見積もられ、強度比から各々の 回転種は charge-rich ならびに charge-poor コロネン分子に帰属できる。Arrhenius 的挙 動を仮定すると、コロネン分子は室温で約 10 GHz の超高速回転していることが分かった。

図 4 (a) (coronene) ${}_{3}Mo_{6}CI_{14}$ の結晶構造、(b) コロネン 分子の merohedral disorder、(c) (d_{12} -coronene) ${}_{3}Mo_{6}CI_{14}$ の 163 K における固体 ${}^{2}H$ NMR スペクトル (赤色実線はシ ミュレーション結果)、(d) (coronene) ${}_{3}Mo_{6}CI_{14}$ の 2.0 GPa 静水圧下における電導度 (σ)の温度依存性。

(coronene)₃Mo₆Cl₁₄ は常圧下で 1.7 S cm⁻¹ と比較的高い室温電導度を示す。半導体的挙 動を示すが、良電導体だと判断できる。2.0 GPa 静水圧下での電導度測定も行ったが、金 属化には成功していない (図 4d)。部分 CT 状 態にもかかわらず金属挙動が観測されなか った理由として、有意な $\pi - \pi$ 相互作用が存 在しないことと電荷不均一状態にあること が考えられる。Mo₆X₁₄²と同形構造を有する 3 価陰イオン Mo₆Br₁₂S₂³⁻を用いたコロネンの電 解酸化も試みたが、単結晶は得られていない。

(4) 積層構造を有するコロネン陽イオンラ ジカル塩の開発(雑誌論文②,④): Q_n 対称 Lindqvist型クラスター $M_6O_{19}^2$ 陰イオン(M = Mo^{VI} , W^{VI})存在下での電解酸化により、 (coronene) ${}_{3}M_6O_{19}$ を得た。他にも様々なイソポ リモリブデン酸($Mo_2O_7^{2-}$, $Mo_7O_24^{6-}$, α - $Mo_8O_26^{4-}$) やイソポリタングステン酸($W_{10}O_{32}^{4-}$)を用い て電解酸化を試みたが、単結晶として得られ たのは(coronene) ${}_{3}M_6O_{19}$ のみであった。これら は同形構造(空間群 PI)を有するため、以下 では主に(coronene) ${}_{3}W_6O_{19}$ に焦点を絞り、研究 成果を報告する。 結晶学的に独立な2つのコロネン分子(A, B)は、…AABAAB…の順に整列したπ積層を 構築する(図 5a)。A-A 対ではグラファイト や Bernal 積層 2 層グラフェンと同様の ring-over-atom 型重なり様式が確認された。 2 分子の π 平面はほぼ平行で、面間距離は 3.16Åと見積もられた。この値は、グラファ イト(3.35Å)、コロネン単体固体(3.43Å)、 密度汎関数理論(DFT)法を用いて最適化し た中性コロネン分子間の面間距離 (3.34-3.51Å)より短く、酸化により電子 が欠損した HOMO 軌道がダイマーを形成する ことにより安定化したためだと考えられる。 一方、A-B 対は ring-over-bond 型重なり様

式を有する。2分子の π 平面は平行ではなく 2.6°の二面角をもつ。分子 B を挟んだ 2 つ の分子 A の面間距離の半分で定義した A···B 間距離は 3.21 Å と見積もられた。

図6 (a) コロネン分子の HOMO 軌道の Jahn-Teller 歪み、 (b) コロネン分子 (外側 12 個の炭素原子に付けた番号 i= 1-12 は、(c)のレーダーチャート周辺の番号に対応)、 (c) DDA 型 交 互 積 層 を 有 す る 中 性 CT 錯 体 (coronene)₂ (F₄TCNQ)、(d) (coronene)₃W₆0₁₉ 中の分子 **A**、 (e) (coronene)₃W₆0₁₉ 中の分子 **B**、(f) DFT 計算で構造最 適化されたコロネン陽イオン (D_{2h} 対称)、における Δd_i のレーダーチャート (Δd_i については本文を参照)。最 大の Δd_i を示す炭素原子を i = 1 とした。

コロネンが酸化されると、Jahn-Teller 効 果により HOMO (e_{2u})の縮退が解けて $a_u \ge b_u$ 軌道に分裂する (図 6a)。このとき、分子は D_{4h} 対称性から D_{2h} に低下する。

各コロネン分子の中心から外側 12 個の炭

素原子までの距離 d_i (i = 1-12;図 6b) につ いて、それらの平均値からのズレ Δd_i (= d_i - $\Sigma d_i/12$) を評価した。DDA 型交互積層を 有する中性 CT 錯体(coronene)₂(F₄TCNQ) (図 6c) では各炭素原子の Δd_i に差異はなく、コ ロネン分子はほとんど歪んでいないのに対 し、(coronene)₃W₆O₁₉中のコロネン分子(図 6d, e) は、DFT 計算から構造最適化された D_h 対称コロネン陽イオン(図 6f)と同程度に歪 んでいる。この結果は、(coronene)₃W₆O₁₉中の コロネン分子が酸化されていることの証左 であり、結晶中でコロネン陽イオンが静的 Jahn-Teller 歪みを起こしていることを世界 で初めて確認した。重要なのは、分子 A と B の両方が同程度の Jahn-Teller 歪みを起こし ている点である。Raman 散乱測定においても、 (coronene)₃Mo₆Cl₁₄で観測された A_{1g}モードの 分裂は確認されず、本錯体においては電荷不 均一は起きていないと考えられる。

(coronene)₃ W_60_{19} は 3.0 S cm⁻¹ と比較的高い 室温電導度をもつが、半導体的挙動を示す (図 7a)。活性化エネルギーは 24 meV と非常 に小さい。2 GPa 程度の静水圧印加により室 温電導度は上昇し、活性化エネルギーは低減 するが、4.0 GPa まで金属的挙動は観測され なかった(図 7b)。DFT 法に基づく第一原理 バンド計算から、(coronene)₃ W_60_{19} のフェルミ 準位はエネルギーギャップ内に位置するこ とが分かった(図 7c-e)。つまり、ギャップ は 23 meV と非常に小さいが、(coronene)₃ W_60_{19} はバンド絶縁体とみなすことができる。

図7 (coronene) ${}_{3}W_{6}O_{19}$ における(a) 電導度(σ)の温度 依存性ならびに(b) 電導度と活性化エネルギー(F_{a})の 圧力依存性。第一原理バンド計算による(coronene) ${}_{3}W_{6}O_{19}$ の(c) バンド分散ならびに(d) 状態密度(DOS)。(e)(d) の拡大図。フェルミ準位(F_{2})を基準零点としている。

 (5)結晶構造-分子回転の相関関係(雑誌論 文②,⑤):(1)で記述した通り、4種類のTCNQ 誘導体(TCNQ, Me₂TCNQ, (MeO)₂TCNQ, F₄TCNQ;
図 1d)を用いて、1:1組成のコロネン中性CT 錯体を開発した。いずれも DA 型交互積層を 形成しており、積層内で隣接するコロネンと TCNQ 誘導体は ring-over-bond 型の重なり様 式を有する(図 8a)。このコロネンと TCNQ 誘 導体の分子面はわずかに傾いており、二面角 (θ ;図 8b 挿入図)は 0.50-2.40°と見積も られた。d₁₂-coronene を用いてこれらの同形 錯体を合成し、固体²H NMR 測定を行った。い ずれの錯体においてもコロネン分子は面内 回転しており、60度フリップ運動を仮定して シミュレーション解析を行った。173 K にお ける回転速度(k_{rot})は θ と相関を持つこと(図 8b)、ならびに F4TCNQ 錯体以外はコロネン単 体固体中のコロネン(10 kHz)よりも高速で 回転していることを見出した。

単体固体、6種類の中性 CT 錯体、3種類の イオン性 CT 錯体中のコロネン分子の 293 K における k_{rot} と活性化エネルギー (E_a)の関 係を図 8c に示す。両パラメータ間には明確 な相関があり、分離積層内ではコロネンの分 子回転が著しく抑制されることが分かった。 逆に、隣接分子と $\pi - \pi$ 相互作用を形成しな いコロネン分子は、GHz オーダーの超高速回 転を行う。図 8c から分かるように、集合形 態によりコロネン分子の回転速度を6桁以上 制御することに成功した。

図8 (a) (coronene) (TCNQ) における ring-over-bond 型 重なり様式 (緑色: コロネン分子、赤色: TCNQ 分子)、 (b) 173 K における回転速度 (k_{rot}) とコロネン··· TCNQ 誘導体間の二面角 θ の相関、(c) CT 固体中のコロネン 分子の 293 K における回転速度 (k_{rot}) と活性化エネルギ ー (E_a) の相関 (\oplus : コロネン単体、 \oplus : コロネン分離 積層、 \blacktriangle : 交互積層、 \blacktriangle : 非 π 積層)。

(6) ボウル型 PAH コランニュレンを用いたCT 錯体の開発(雑誌論文⑥):コランニュレン 分子(図 1b)は、フラーレン部分構造の中で 最小の湾曲分子であり、コロネン分子とは異 なり「表裏」に違いがある。さらに、フラー レンやカーボンナノチューブとは異なり、凸 曲面と凹曲面の両方が開放されている。本研 究課題では、コランニュレン分子の両曲面に おける平面 π 共役分子との π - π 相互作用に ついて知見を得るために物質開発を推進し、 TCNQ との CT 錯体を得ることに成功した。

減圧加圧下での共昇華により、2:1 錯体を 得た。16.7×10⁻³ cm⁻¹にCTバンドが観測され、 コランニュレンが電子ドナーとして機能し ていることを確認した。図 9a に b 軸投影図 を示す。コランニュレンのみから構成される 分離積層と、コランニュレンと TCNQ が交互 に並んだ交互積層の2種類のπ積層が存在し、 いずれも a 軸方向に積層している。交互積層 内のコランニュレンと TCNQ は、図 9b, c に示 すように両曲面において ring-over-atom 型 の重なり様式をもつ。拡張 Hückel 法を用い てコランニュレン分子の HOMO と TCNQ 分子の LUMO 間の重なり積分を計算したところ、凸曲 面側 $(a_1 = 1.30 \times 10^{-2})$ では凹曲面側 $(a_2 =$ -9.61×10⁻⁴)よりも1桁以上大きな絶対値を もつことが分かった(図 9d)。この結果は、 凸曲面側でのみ HOMO 係数の大きな hub 炭素 が隣接 TCNQ 分子と C···C 原子間接触してい ることと対応しており、コランニュレン分子 の表裏で CT 相互作用に差異があることを実 験的に初めて確認した。

図 9 (a) (corannulene)₂TCNQ の結晶構造(緑色:コラ ンニュレン分子、赤色:TCNQ 分子)、交互積層内におけ る (b) 凸曲面側ならびに(c) 凹曲面側の ring-over-atom型重なり様式、(d) 交互積層内の隣接コ ランニュレン…TCNQ 間の $\pi - \pi$ 相互作用。赤色ならび に緑色点線は、hub 炭素ならびにrim 炭素が関与した短 い C…C原子間接触を示す(a, a: 重なり積分)。

5. 主な発表論文等

〔雑誌論文〕(計24件)

① <u>Y. Yoshida</u>, K. Isomura, Y. Kumagai, <u>M.</u> <u>Maesato</u>, H. Kishida, <u>M. Mizuno</u>, G. Saito, Coronene-Based Charge-Transfer Complexes, J. Phys.: Condens. Matter, 印刷中. 査読有

② <u>Y. Yoshida</u>, K. Isomura, H. Kishida, Y. Kumagai, <u>M. Mizuno</u>, M. Sakata, T. Koretsune, Y. Nakano, H. Yamochi, <u>M. Maesato</u>, G. Saito, Conducting π Columns of Highly Symmetric Coronene, the Smallest Fragment of Graphene, Chem. Eur. J. 22, 6023-6030 (2016). 査読有 DOI: 10.1002/chem. 201505023

③ <u>Y. Yoshida</u>, H. Ito, <u>M. Maesato</u>, Y. Shimizu, H. Hayama, T. Hiramatsu, Y. Nakamura, H. Kishida, T. Koretsune, C. Hotta, G. Saito, Spin-Disordered Quantum Phases in a Quasi-One-Dimensional Triangular Lattice, Nature Phys. 11, 679-683 (2015). 査読有 DOI: 10.1038/NPHYS3359

④ Y. Yoshida, Y. Kumagai, <u>M. Mizuno</u>, K. Isomura, Y. Nakamura, H. Kishida, G. Saito, Improved Dynamic Properties of Charge-Transfer-Type Supramolecular Rotor Composed of Coronene and F₄TCNQ, Cryst. Growth Des. 15, 5513-5518 (2015). 査読有 DOI: 10.1021/acs.cgd.5b01138

⑤ Y. Yoshida, Y. Kumagai, M. Mizuno, G. Saito, Structure-Property Relationship of Supramolecular Rotators of Coronene in Charge-Transfer-Solids, Cryst. Growth Des. 15, 1389-1394 (2015). 査読有 DOI: 10.1021/cg5017774

⑥ Y. Yoshida, K. Isomura, Y. Nakamura, H. Kishida, G. Saito, Charge-Transfer Complex Formed with Bowl-Shaped Corannulene as Electron Donor and Planar 7, 7, 8, 8-Tetracyanoquinodimethane as Electron Acceptor, Chem. Lett. 44, 709-711 (2015). 査読有 DOI: 10.1246/cl.150115

⑦ Y. Yoshida, M. Maesato, Y. Kumagai, M. Mizuno, K. Isomura, H. Kishida, M. Izumi,
Y. Kubozono, A. Otsuka, H. Yamochi, G. Saito, K. Kirakci, S. Cordier, C. Perrin,
Isotropic Three-Dimensional Molecular
Conductor Based on Coronene Radical Cation,
Eur. J. Inorg. Chem. 2014, 3871-3878
(2014). 査読有
DOI: 10.1002/ejic.201400119

<u>Y. Yoshida</u>, Y. Shimizu, T. Yajima, G. Maruta, <u>S. Takeda</u>, Y. Nakano, T. Hiramatsu, H. Kageyama, H. Yamochi, G. Saito, Molecular Rotors of Coronene in the Charge Transfer Solida, Charge T

Charge-Transfer Solids, Chem. Eur. J. 19, 12313-12324 (2013). 査読有 DOI: 10.1002/chem.201300578

⑨ Y. Yoshida, M. Maesato, M. Ishikawa, Y. Nakano, T. Hiramatsu, H. Yamochi, G. Saito, Charge-Transfer Solids Using Nucleobase: Supramolecular Architectures Composed of Cytosine and [Ni(dmit)₂] Assembled by Multiple Hydrogen Bonds and Heteroatomic Contacts, Chem. Eur. J. 19, 12325-12335 (2013). 査読有

DOI: 10.1002/chem.201300865

〔学会発表〕(計55件)

① <u>Y. Yoshida</u>, K. Isomura, H. Kishida, Y. Kumagai, <u>M. Mizuno</u>, M. Sakata, T. Koretsune, Y. Nakano, H. Yamochi, <u>M. Maesato</u>, G. Saito, Coronene-Based Cation Radical Salts with Segregated Columns, Pacifichem 2015, 米国ハワイ州ホノルル, 2015年12月15-20日.

② Y. Yoshida, Y. Kumagai, <u>M. Mizuno</u>, K. Isomura, H. Kishida, G. Saito, Coronene-Based Supramolecular Rotors, Pacifichem 2015, 米国ハワイ州ホノルル, 2015年12月15-20日.

③ <u>Y. Yoshida</u>, K. Isomura, H. Kishida, Y. Kumagai, <u>M. Mizuno</u>, M. Sakata, T. Koretsune, Y. Nakano, H. Yamochi, <u>M. Maesato</u>, G. Saito, Formation of $\pi - \pi$ Stacking of Cationic Coronene, ISCOM 2015, ドイツバイエルン州バートゴギング, 2015年9月 6-11 日.

④ Y. Yoshida, M. Maesato, Y. Kumagai, M. Mizuno, K. Isomura, H. Kishida, M. Izumi, Y. Kubozono, A. Otsuka, H. Yamochi, G. Saito, K. Kirakci, S. Cordier, C. Perrin, First Coronene Cation Radical Salt: Isotropic Three-Dimensional Molecular Conductor, ICSM 2014, フィンランドトゥルク, 2014年6月30日-7月5日.

〔図書〕(計0件)

〔産業財産権〕
○出願状況(計0件)
○取得状況(計0件)

6.研究組織
(1)研究代表者
吉田 幸大(YOSHIDA, Yukihiro)
名城大学・農学部・助教
研究者番号:10378870

(2)研究分担者
前里 光彦(MAESATO, Mitsuhiko)
京都大学・理学研究科・准教授
研究者番号:60324604

 (3) 連携研究者 武田 定(TAKEDA, Sadamu) 北海道大学・理学研究科・教授 研究者番号:00155011

水野 元博(MIZUNO, Motohiro)金沢大学・自然科学研究科・教授研究者番号:70251915