科学研究費助成事業

研究成果報告書

平成 28 年 6 月 1 0 日現在

		0 1 1 0	
機関番号: 82110			
研究種目: 基盤研究(B)(一般)			
研究期間: 2013~2015			
課題番号: 2 5 2 8 9 0 4 7			
研究課題名(和文)液体水素強制冷却高温超電導導体設計のための過渡冷却物	寺性と過渡伝搬特	性の解明	
研究課題名(英文)Study of transient heat transfer phenomena of Liqui temperature superconducting device	d hydrogen for	a high	
研究代表者			
達本 衡輝(HIDEKI、TATSUMOTO)			
国立研究開発法人日本原子力研究開発機構・原子力科学研究部門 J-PARC	センター・研究副	主幹	
研究者番号:7 0 3 9 1 3 3 1			
交付決定額(研究期間全体):(直接経費) 13.400.000円			

研究成果の概要(和文):高温超伝導体の液体水素冷却は、従来の液体窒素冷却の場合に比べて、電気・磁気的性能の 向上と超伝導状態が破れた際の冷却安定性の向が期待される。本研究では、高温超伝導線材の液体水素による強制流動 方式を提案し、その実用化に向けて液体水素強制流動下の過渡熱伝達特性データを既存の装置を用いて取得した。さら に、開発した遠心式ポンプと既存の実験装置を組み合わせて、長時間安定に液体水素を流動できる循環ループを開発し た。これにより、これまで得られなかった高流速域でのデータの取得に成功し、広範囲の流速域で定量的に評価できる 熱伝達の相関式を導出した。また、超伝導線材の過渡電流分流特性を提案し、その妥当性を検証した。

研究成果の概要(英文): Liquid hydrogen is expected as a coolant for high-Tc superconductors. We propose forced flow cooling of liquid hydrogen for high-Tc a superconducting device. In this study, we measured transient heat transfer of liquid hydrogen in forced flow using Pt-Co wire heaters inserted into a vertically mounted pipe like Cable-in-Conduit Conductor. In order to obtain data for high flow rates, we have developed a hydrogen loop that was stably operated for a long time using a developed hydrogen pump and the existing experimental apparatuses. We successfully acquired the experimental data for higher flow rates. rate. We derived a transient heat transfer correlation based on our experimental data obtained in a wide range of flow rates, pressures and temperatures. Furthermore, we established a model to estimate properties of the current-sharing ratio among MgB2 and sheath materials. Transient over-critical-current tests were performed on a MgB2 wire cooled by LH2 under magnetic field.

研究分野: 熱工学

キーワード:液体水素 熱伝達 高温超伝導

2版

1.研究開始当初の背景

高温超伝導体を液体水素(20 K)で冷却する と、従来の液体窒素冷却の場合に比べて、飛 躍的に電気・磁気的な性能が向上するだけで なく、超伝導状態が破れた際に発生するジュ ール発熱による冷却安定性も向上するので、 高温超伝導体の実用化へのブレイクスルー になると期待されている。

高温超電導体は、NbTiなどの金属超伝導体 (4.2K 冷却)に比べて、使用温度領域が高いの で比熱が大きい。そのため、臨界電流以上の 過電流が流れた場合でも発熱による温度上 昇は小さく、臨界温度以下であれば、瞬時に 超伝導状態が破れる (クエンチ)ことになら ない。しかし、冷却が不十分で膜沸騰状態に 遷移すると、線材の温度は臨界温度以上とな り、クエンチすることになる。このように、 高温超伝導線材の特性は、導体の構造だけで なく、液体水素の冷却特性にも大きく依存す るので、高温超伝導応用機器の設計において、 液体水素の冷却特性の把握とその効率的な 冷却方式の検討が必要不可欠である。

研究代表者らは、2009年に液体水素の熱流 動実験装置を開発[1]し、JAXA 能代ロケット 実験場の防爆実験室に設置した。大気圧~臨 界圧に至る広範囲の圧力、温度条件下での浸 漬冷却特性[2]および間接冷却方式を想定し た一様加熱円管内の強制冷却特性に関する 研究[3,4]を行ってきた。

水素に対する安全性の観点から、間接冷却 方式が一般的な考え方であるが、CICC(ケー ブルインコンジット)導体のような液体水素 による直接冷却方式の方が、高温超電導線材 の性能を十分発揮できる。

2.研究の目的

本研究では、高温超伝導線材の特性を十分 に発揮できる液体水素の強制流動による直 接冷却方式を提案し、その導体設計基準の確 立をすることを目的としている。

3.研究の方法

(1)液体水素強制流動熱伝達実験装置

実験装置は、実験槽(設計圧力2.0MPaG、直 径406mm、高さ1495mm、液体水素の充填容 積は50L)とサブタンクが流調弁を有する断 熱真空配管によって連結されている。液体水 素の温度は、シースヒータで調整し、Cernox 温度センサーにより計測した。実験槽圧力は、 水素カードルからの水素ガスをドーム型減 圧弁により調整した。これらの容器の圧力差 と流調弁開度を調整することで液体水素の

強制流動を発生させ、その流速は、実験槽 を載せた重量計(0.002 kgの精度)の重量変 化とタービンフローメータによる供給ガス 流量測定により評価した。 (2)液体水素循環ループ

上述の液体水素強制流動熱伝達実験装置 は、2つのタンクの差圧により強制流動を発 生する装置である。さらに実験槽は最大で 50Lの液体水素インベントリを有するが、実 槽内に設置した供試体より液面が低くなる と供試体を設定温度に維持できず、かつ、差 圧駆動のため、大流量の液体水素を長時間安 定に流すことができなかった。そこで、これ までに開発した液体水素ポンプ(気体軸受方) 式の遠心ポンプ(回転数: 30.000~63.000 rpm))と既存の2つの実験装置を組み合わせ ることにより、図1に示すような液体水素お よび超臨界水素(臨界圧:1.29 MPa)を長時 間安定に強制循環するための循環ループを 開発した。ポンプの防爆対策は、これまでと 同様に、ポンプ自体をブランケットで覆い、 陽圧の窒素ガス雰囲気に保持した。既存の 「液体水素冷却超電導材料の通電基礎特性 試験装置」をバッファタンクとして使用し、 「強制対流熱伝達実験装置」には、コイル状 の熱交換器を設置して、循環ループ内の液体 水素を再凝縮器とした。実験槽は常に大気解 放状態とし、液体水素の液位が低下すると、 30,000 L の液体水素貯槽からサブタンクを介 して実験槽に供給できるようにして、長時間 の連続運転が可能とした。安全対策として、 実験中の操作はすべて遠隔でするように運 転制御システムを構築した。供試体への供給 温度は、実験槽内の液位(熱交換器で熱交換 量)を制御した。オリフィス流量計によりポ ンプ吐出流量と供試体への供給流量を測定 した。

図 1.液体水素循環ループの概要

(3)供試体

図 2 強制流動過渡熱伝達測定用供試体の形 状を示す。内径 8 mm の FRP 製流路の中心軸 に沿って, 直径(*d*) 1.2mm、加熱長さ(*L*)60mm, 120mm, 200mm の PtCo 製ワイヤヒーターを 設置した。この供試体は、(1)で示した実験 装置では、実験槽内のトランスファーチュー ブの一端に接続し、(2)で示した実験装置 ではバッファタンク内のトランスファーラ インの一端に設置し、垂直に支持した。

図 2. 過渡熱伝達用供試体の形状

一方、MgB₂超電導線材の過電流特性用供 試体として、試験体は直径 0.83mm、電流端 子間距離 105.5mm、電圧端子間距離 47.65mm のMgB₂線材を水平に支持した。試験体にはCu シース Nb バリア MgB₂線材を用いた。

(4)強制流動過渡熱伝達特性の実験方法 本実験では上述の(1)と(2)の実験装置 を用いて、過渡熱伝達特性実験を実施した。 (3)で記述した PtCo ワイヤを指数関数状 の発熱率 $Q = Q_0 exp(t/\tau)$ で直流電流加熱し、 上昇周期 τ を変化させて過渡熱伝達特性を測 定した。発熱体平均温度は、PtCo ヒーターの 電気抵抗変化から測定し、発熱体表面温度は、 平均温度の垂直軸方向分布を無視して、その 平均温度と発熱率から半径方向の熱伝導方 程式を解いて求めた。

(5) MgB₂超電導線材の過渡分流特性の実験 方法

1.1MPaの圧力で、液温を 21K~29K、磁場 を 0T~0.8T と変化させた。試験体に連続的 に指数関数状の発熱率 $Q_0 \exp(t/\tau)$ を与え、上 昇周期 τ を変化させた。

4.研究成果

(1)液体水素循環ループ特性試験結果 ポンプ起動から停止まで7時間の長時間連続 運転を実施した時の試運転結果の一例を図3示 す。圧力は0.3MPa、1.1MPa、0.75MPa、 1.5MPa(超臨界圧)の順で変化させ、各圧力時 においてバイパス弁開度を調整し、供試体流量 調整試験を実施した。供試体への供給流量は 最大で43.7g/sであることを確認した。 計通りの性能を確認することができた。この時の 供試体への供給温度は熱交換出口より約2K高

い 22.5K であった。安定に長時間運転できる ことを本性能試運転で確認できた。

図3.液体水素循環ループの試運転結果

(2) 強制流動過渡熱伝達特性結果

直径 1.2mm、加熱長さ 120 mm の PtCo 製ワ イヤの場合の流速が 0.8 m/s と 5.5 m/s の場合 の液体水素の強制対流過渡熱伝達特性結果 を図 4 示す。横軸は発熱体表面温度(*T_w*)の入 口温度からの上昇分(*ΔT_L* =*T_w* - *T_{in}*)である。

が大きい(加熱速度がゆっくり)場合、非沸 騰域の熱伝達は、Dittus-Boelter 式[2]の予測値 と良く一致しているが、が小さくなると過 渡熱伝導の寄与が大きくなり、Dittus-Boelter 式より大きくなる。同じ上昇周期の場合、流 速が速い方が、熱伝導の影響は小さく、その 影響が現れる上昇周期は小さい。一方、核沸 騰熱伝達はほとんど上昇周期の影響はみら れないが、DNB(Departure from Nucleate Boiling)熱流束(*q*DNB</sub>)は、が小さくなるに つれて大きくなっている。

図 4. 強制流動過渡熱伝達特性結果の一例

図 5 に加熱長さが 120 mm の PtCo 製ワイヤ ヒーターの場合の 0.4 MPa における過渡 CHF(q_{cr})の 依存性を示す。 > 1s では、過 渡 CHF は加熱速度の影響はなく、ほぼ一定で あり、定常状態とみなせる。 < 1s では、 の減 少(加熱速度を速くする)とともに、 過渡 CHF は 増加し、 が同じ場合、流速が速い方が過渡 CHF は大きい。0.7 MPa の場合(図 6)、0.4 MPa の場合と同様に、 < 1s で が短くなると</p> gcr は単調増加しており、サブクール液体水素に よる強制冷却の場合、液体窒素の浸漬冷却で 報告[5]されているような核沸騰域がなく、 膜沸 騰へ直接遷移することによる過渡 CHF の急激 な減少はないことが明らかになった。また、 圧力 が低い方が、の減少に伴う過渡 CHF の増加 傾向は大きくなっている。

図 5.0.4 MPa における過渡 CHF(q_{cr})の 依存 性 (L=120 mm)

図 6.0.7 MPa における過渡 CHF(q_{cr})の 依存 性 (*L*=120 mm)

過渡 CHF(q_{α})を定常 CHF(q_{st})からの上昇分 ($q_{cr} - q_{st}$)として整理した結果を図7に示す。 ($q_{cr} - q_{st}$)は、同一の供試体においては、流 速の影響は殆どなく、α -0.5の関数で表され ることがわかった。また、同一の特性長さ (L/D_h :加熱長さと加熱等価直径との比)を 有する供試体では、実験結果は同一の直線状 に存在するが、特性長さが大きくなると、係 数αは、大きくなることが明らかにした。

Exponential period (s)

図 7. 過渡 CHF の定常 CHF からの上昇分(q_{cr} - q_{st}) の 依存性

(3) 超電導線材の過渡分流特性の実験結果 供試体の抵抗率が10⁻¹³mに達したときの電 流値を臨界電流とし、臨界電流と温度の関係か ら MgB₂線材の臨界電流値を以下のように温度 の関数として表した。

$$I_{c}=X\{1.0-(T/T_{c}(B))^{Y}\}^{Z}$$
 (1)
ここで、X、Y、Z は各磁場で求めた定数である。
MgB₂線材の電気抵抗 R(T,I)を次式で近似した。
R (T,I) = R_N(T)[1.0-1.0/{(1.0-a)}
+a (I/I_c(T))^{m}]^{0.1}] (2)}

*R*_Nはバリア材のNbとシース材のCuの合成抵抗 である。式(2)の*aとm、*非沸騰熱伝達理論式を 用いて決定した。

図8は、磁場をパラメータとして、21Kにおける 分流比と電流の関係を示す。分流比は(2)式より、 以下のように表せる。

I_N/I(T)=1.0-1.0/{(1.0-a)+a(I/I_c(T))^m}^{0.1} (3) 分流比は、電流が大きいほど、磁場が大きいほ ど大きくなっている。このように、提案した過渡加 熱法により、高温超伝導線材の分流特性を評価 できることがわかった。

図 8.分流比と電流の関係

(参考文献)

[1] H.Tatsumoto et al., Journal of Physics; Conference Series, 234 032056 (2010)

[2] Y.Shirai, H.Tatsumoto et al., Cryogenics, 50, p410-p416 (2010)

[3] H. Tatsumoto et al., Physics Procedia, **36** (2012) 1360-1365

[4] H. Tatsumoto et al., Advances in Cryogenic Engineering, **57B** (2012) 747-754
[5] A.Sakurai et al; Cryogenics, Vol.32 (1992) p.421

5.主な発表論文等

(研究代表者、研究分担者及び連携研究者に は下線)

〔雑誌論文〕(計4件)

(1) "Forced convection heat transfer from a wire inserted into a vertically-mounted pipe to liquid hydrogen flowing upward", <u>H.Tatsumoto, Y.Shirai, M Shiotsu, Y Naruo,</u> H. Kobayashi and Y Inatani Journal of Physics: Conference Series,568,032017, 2014,査読有,

DOI: 10.1088/1742-6596/568/3/032017

(2) "Cooling Stability Test of MgB₂ Wire Immersed in Liquid Hydrogen under External Magnetic Field", <u>Y.Shirai</u>, K. Hikawa, <u>M.</u> <u>Shiotsu</u>, <u>H. Tatsumoto</u>, <u>Y. Naruo</u>, H. Kobayashi and Y. Inagaki, Journal of Physics: Conference Series, 507, 022031, 2014, 査読有,

DOI: 10.1088/1742-6596/507/2/022031 (3) "Transient Heat Transfer from a Wire Inserted into a Vertically Mounted Pipe to Forced Flow Liquid Hydrogen ",<u>H.Tatsumoto</u>, <u>Y.Shirai,M.Shiotsu,Y.Naruo</u>,H.Kobayashi, Y.Inatani,PhysicsProcedia,Volume67, 649-654,2015,査読有,

DOI: 10.1016/j.phpro.2015.06.110

(4) "Transient heat transfer from a wire to a forced flow of subcooled liquid hydrogen passing through a verticallymounted pipe", <u>H Tatsumoto</u>, <u>Y Shirai, M</u> <u>Shiotsu</u>, <u>Y Naruo</u>, H Kobayashi, S Nonaka and Y Inatani, IOP Conf. Series: Materials Science and Engineering ,101, 012177, 2015, 査読有, DOI:10.1088/1757-899X1101/1/012177

(1) <u>白井</u>康之,茂田 宏樹,飼沼 徹,<u>塩津</u> <u>正博</u>,<u>達本 衡輝</u>,<u>成尾 芳博</u>,小林 弘明,野 中 聡,稲谷 芳文,吉永 誠一,液体水素強制 対流冷却試験のための循環ループ装置,2015 年秋季低温工学・超電導学会,2015 年 12月2 日~4日,姫路商工会議所(兵庫県姫路市) (2) <u>達本 衡輝</u>,<u>白井康之</u>,<u>塩津 正博,成尾</u> <u>芳博</u>,小林 弘明,野中 聡,稲谷 芳文,堀 江 祐輝,茂田 宏樹,比嘉 大輔,サブクー ル液体水素の強制流動下における流路中心 垂直発熱線における DNB 熱流束,2015 年春季 低温工学・超電導学会,2015 年 5月 27 日~ 29 日,産業技術総合研究所つくばセンター 共用講堂(茨城県つくば市)

(3)<u>茂田 宏樹</u>, 堀江 裕輝, 松澤 崇之, 米田 和也, <u>白井 康之</u>, <u>塩津 正博</u>, 小林 弘明, <u>成</u> <u>尾 芳博</u>, 稲谷 芳文, <u>達本 衡輝</u>, 熊倉 浩明, 葉 術軍, 拡散法で作製した MgB2 線材の液 体水素冷却下における臨界電流特性,2014 年 秋季低温工学・超電導学会, 2014 年 11 月 5 日~7日, コラッセふくしま(福島県福島市) (4)<u>塩津 正博, 白井 康之</u>, 堀江 裕輝, 米田 和也, 松澤 崇之, <u>達本 衡輝</u>, 畑 幸一, 小林 弘明, <u>成尾 芳博</u>, 稲谷, 芳文液体水素流路中 心の垂直発熱線における DNB 熱流束, 2014 年 11 月 5 日~7日, コラッセふくしま (福島県福島市)

(5) 達本 衡輝, 白井 康之, 塩津 正博, 堀江 裕輝,米田 和也,松澤 崇之, 茂田 宏樹, 成 尾 芳博, 小林 弘明, 野中 聡, 稲谷 芳文, 強制流動下におけるサブクール液体水素の 過渡熱伝達特, 2014 年秋季低温工学・超電導 学会,2014 年 11 月 5 日 ~ 7 日,コラッセふく しま(福島県福島市)

(6)茂田 宏樹,堀江 裕輝,松澤 崇之,米田 和也,大浦 洋祐,<u>白井 康之,塩津 正博</u>,小林 弘明,<u>成尾 芳博</u>,稲谷 芳文,<u>達本 衡輝</u>,液体 水素冷却 MgB₂ 超電導線材の過電流特性の解 析,2014 年春季低温工学・超電導学会,2014 年5月26日~5月28日,タワーホール船堀、東 京都江戸川区)

(7) 松澤 崇之,堀江 裕輝,米田 和也,大浦 洋祐,<u>白井 康之,塩津 正博</u>,畑 幸一,<u>達本</u> <u>衝輝</u>,<u>成尾 芳博</u>,小林 弘明,稲谷 芳文,液体 水素冷却 MgB²線材の磁場下における過電流 特性,2014 年春季低温工学・超電導学会,2014 年5月26日~5月28日,タワーホール船堀(東 京都江戸川区)

(8)<u>塩津 正博,白井 康之</u>,大浦 洋祐,堀江 裕輝,米田 和也,達本 衡輝,畑 幸一,小林 弘明,<u>成尾 芳博</u>,稲谷 芳文液体水素流路 中心の円柱発熱体における膜沸騰熱伝 達,2014 年春季低温工学・超電導学会,2014 年5月26日~5月28日,タワーホール船堀東 京都江戸川区)

(9) <u>達本 衡輝, 白井 康之, 塩津 正博, 成尾</u> <u>芳博</u>, 小林 弘明, 稲谷 芳文, 堀江 裕輝, 米田 和也, 松澤 崇之, 液体水素の強制流動下にお ける過渡熱伝達, 2014 年春季低温工学・超電 導学会, 2014 年 5 月 26 日~5 月 28 日, タワ ーホール船堀(東京都江戸川区) 他海外発表 3 件

6.研究組織

(1)研究代表者
 達本 衡輝(TATSUMOTO HIDEKI)
 国立研究開発法人日本原子力研究開発機構・原子力科学研究部門 J-PARC センター・研究副主幹
 研究者番号:70391331

(2)研究分担者
 白井 康之(SHIRAI YASUYUKI)
 京都大学・エネルギー科学研究科・教授
 研究者番号:60179033

成尾 芳博 (NARUO YOSHIHIRO) 宇宙航空研究開発機構・宇宙科学研究所・ 助教 研究者番号:70150050

塩津 正博(SHIOTSU MASAHIRO) 京都大学・エネルギー科学研究科・ 名誉教授 研究者番号:20027139

[〔]学会発表〕(計12件)