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1.1 have constructed (joint research with J. Itoh) Riemannian and Finslerian
structures on spheres whose cut locus of a point is a fractal (i.e. the Hausdorff dimension of the cut
locus is not integer). This result is interesting not only for Finsler geometry, but also for Riemannian
geometry and it is in the same time consistent with the result of Itoh-Tanaka about the Hausdorff
dimenﬁion of the cut locus of a smooth Riemannian manifold. Indeed, our Riemannian structure is not a
smooth one.

2.1 have introduced and studied the notion of convex functions on Finsler manifolds (joint research with
K. Shichama). Similarly with the Riemannian case, we have shown that there are topological restrictions
for Finsler manifolds that admit convex functions. The difference with the Riemannian case was also
clarified, as well as the influence of non-reversibility of geodesics in the Finslerian setting.As
application, I have studied the convexity of Busemann functions on Finsler manifolds.
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1. Finsler geometry is famous for the lo-

cal computations and the lack of global
results.

When I start this research project,
there was almost nothing known about
the cut locus of a Finsler manifold. The
cut locus is a very important topic in
Differential geometry that links the lo-
cal geometry and the global one. So it
was a real need in Finsler geometry for
a detailed study of the cut locus.

. Also, the relation of Finsler geometry

with the topology of the base manifold
is not clear. By simply assuming that
the Finsler manifold admits a convex
function, I expected this relation to be-
come clear.
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In the present research 1 have planned to
study the following problems:

1. The cut locus structure of a Rieman-

nian and Finsler manifold

. The topological structure, the isometry

group and other geometrical properties
of a Finsler manifold that admits a con-
vex function.

Ooodn

. I have used methods from the theory

of geodesics in order to study the exis-
tence of Riemannian structures whose
cut locus is a fractal. However, only
a small part of these methods are ap-
plicable in the Finslerian case. So new
geometrical techniques need to be de-
veloped for the Finsler case.

2. The topological structure and other ge-

ometrical properties of Finsler mani-
folds admiting a convex function can-
not be studied using classical tools
used in Riemannian geometry, as
Rauch comparison theorem or Topono-
gov comparison. Therefore, I will use
only variational formulas for Finsler
manifolds and the properties of the
Busemann function.
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1. The cut locus.

(a) Finslerian distance and cut locus
structure @

Theorem 4.1 Let N be a closed
subset of a backward complete ar-
bitrary dimensional Finsler man-
ifold (M, F). Then, the distance
function dy from the subset N 1is
differentiable at a point ¢ € M\ N
if and only if ¢ admits a unique
N -segment.

The following theorems are the
main theorems about the cut lo-
cus. Their counterparts for the
cut locus of a compact subset of
an Alexandrov surface have been
proved by Shiohama and Tanaka.
However, we point out that the
key tool for proving these in the
Riemannian or Alexandrov spaces
case was the Toponogov compar-
ison theorem, that does not hold
for Finsler manifolds. Hence, we
gave completely different proofs to
these theorems.

Theorem 4.2 Let N be a closed
subset of a backward complete
2-dimensional Finsler manifold



(M, F). Then, the cut locus Cy
of N satisfies the following prop-
erties:

. Cn is a local tree and any two
cut points on the same con-
nected component of Cn can
be joined by a rectifiable curve
m CN.

1. The topology of Cy induced
from the intrinsic metric 0
(see Section 7 for definition)
coincides with the topology in-

duced from (M, F).

11. The space Cyn  with the
intrinsic metric § is back-
ward — complete,  provided

;relgde(CN,Q) > 0.

w. The cut locus C'y 1s a union of
countably many Jordan arcs
except for the endpoints of
CN-

Theorem 4.3 There exists a set
E C [0,supdy) of measure zero
with the following properties:

i. For each t € (0,supdn) \ &,
the set dy'(t) consists of lo-
cally finitely many mutually
disjoint arcs. In particular,
if N is compact, then dy' (t)
consists of finitely many mu-
tually disjoint circles.

it. For each t € (0,supdy) \ €&,
any point q € dy'(t) admits
at most two N -segments.

Remark 4.4 Notice that the cut
locus of a closed subset is not al-
ways closed, but the space Cy
with the intrinsic metric ¢ is back-
ward complete for any closed sub-
set of a backward complete Finsler
surface.

(b)

Riemannian and Finsler spheres
whose cut locus is a fractal @)

Theorem 4.5 For any integer
2 < k < oo there is an at least k-
differentiable Riemannian metric
on the n(k)-dimensional sphere
S™*®) and a point p in S™*) such
that the Hausdorff dimension of
C(p) is a real number between 1

and 2, where n(k) := %

Moreover, we show that there is a
Finsler metric of Randers type on
this sphere with the same prop-
erty. Indeed, if we use the same
notations as in Theorem 4.5, we
have

Theorem 4.6 For any integer
2 < k < oo, under the influence
of a suitable magnetic field B de-
fined on S™¥) | there is an at least
k-differentiable non-Riemannian
Finsler metric of Randers type on
S™k) such that the cut locus of the
point p with respect to this Finsler
metric coincides with C(p).

The cut locus of a surface of rev-
olution (D

we perturb the induced canoni-
cal Riemannian metric h of a sur-
face of revolution by the rotational
vector field W obtaining in this
way a Randers type metric on M
through the Zermelo’s navigation
process. We study some of the lo-
cal and global geometrical proper-
ties of the geodesics on the surface
of revolution M endowed with this
Randers metric.

Theorem 4.7 Let (M, F = o+
B) be the rotational Randers met-
ric constructed from the naviga-

tion data (h,W), where (M, h)



1s a Riemannian surface of rev-
olution whose warp function is
bounded m(r) < %, w > 0, and
W = u% 15 the breeze on M
blowing along parallels, then the
unit speed Finslerian geodesics P :
(—€,€) = M are given by

(4.1) P(s) = (r(s),0(s) + ps),

where y(s) = (r(s),0(s)) is a h-
unit speed geodesic.

Theorem 4.8 The rotational
Randers space (M, F = a + f3)
can be isometrically embedded
into the Minkowski space (U,, F)
if and only if the Riemannian
surface of revolution (M,h) can

be isometrically embedded in
(R3,0).

The geometry of a Riemannian
surface of revolution is completely
governed by the Clairaut relation,
but the correspondent of this re-
lation in Finsler geometry is un-
known. We give here a generalisa-
tion of the Riemannian Clairaut
relation to the case of a Randers
rotational surface of revolution.

Theorem 4.9 Let  7(s) =
(r(s),0(s)) be an h-geodesic of
Clairaut constant v, that makes
an angle ¢(s) with the profile
curve passing through ~(s), and
let P(s) be the corresponding
F-geodesic on the Randers ro-
tational surface of revolution
(M, F). Then the following

relations hold good.

(4.3)
v+ ,um2

\/1+2;w+u2m27

msiny =

where 1 is the angle between
P(s) and the profile curve passing
through P(s).

Obviously, these two forms of the
Clairaut relation are equivalent
and they reduce to the classical
Clairaut relation when F' is Rie-
mannian.

The geometry of geodesics of
(M, F) can now be easily obtained
using these relations (see Section.
We mention here a result about
the set of poles of a Randers ro-
tational metric.

Theorem 4.10 For any point
q # p, let v be a geodesic from q,
which 1s not tangent to the twisted
meridian through q. Then -y
cannot be a ray, that is the vertex
p is the unique pole of (M, F).

Concerning the cut locus on the
Randers surface, we have proved
the following result.

Theorem 4.11 Let (M, F = a+
B) be a rotational Randers von
Mangoldt surface of revolution.
Then, for any point q # p, the
Finslerian cut locus CqF of q 1s
the Jordan arc

CF) = {p(s,7(5)) : s € [c,00)},

where ¢(c,7,(c)) is the first con-
jugate point of q along the twisted
meridian (s, 7,(s)).

(4.2) 2. Finsler manifolds admitting a convex
V14 2uv + p2m?2 cos(p—¢) = 1+uv,  function @).
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A function ¢ : (M,F) — R is said
to be conver if and only if along ev-
ery (forward and backward) geodesic
v ¢ la,b] — (M, F), the restriction
wo~: |a,b — R is convex function,
that is:

poy((1=A)a+A b) < (1=A)poy(a)+Apoy(b),

where 0 < \ < 1.

Theorem 4.12 Let ¢ : (M, F) — R
be a convex function. Assume that all
of the levels of ¢ are compact.

If infy; @ is not attained, then there ez-
ists a homeomorphism

H = Mg(p) x (inf o, 00) — M,

for an arbitrary fired number a €
(infrs ¢, 00), such that

o(H(y,t)) =t, Yy € M2(p), Vt € (iﬂnjso, 00).

Moreover, if X := infy; ¢ is attained,
then M 1is homeomorphic to the normal
bundle over M (p) in M.

Next, we discuss the case where ¢ has
a disconnected level.

Theorem 4.13 Let ¢ : (M,F) — R
be a convex function. If MS(p) is dis-
connected for some ¢ € p(M), we then
have

(1) infps ¢ is attained.
(2) If X := infyr @, then M{(p) is a
totally geodesic smooth hypersur-

face which is totally convexr without
boundary.

(3) The normal bundle of M{(p) in M
is trivial.

(4) If b > X, then the boundary of
the b-sublevel set M°(p) := {x €

M | p(x) < b} has exactly two com-
ponents.

The diameter function § : (M) — Ry
plays an important role in this article
and it is defined as follows:

0(t) = sup{d(z,y)|z,y € M (p)}.

It is known that the diameter function
0 of a complete Riemannian manifold
admitting a convex function is mono-
tone non-decreasing. However it is not
certain if it is monotone on a Finsler
manifold.

We finally discuss the number of ends
of a Finsler manifold (M, F') admitting
a convex function .

Theorem 4.14 Let ¢ : (M,F) — R
be a convex function.

(a) Assume that ¢ admits a discon-
nected level.

(A1) If all the level of v are com-
pact, then M has two ends.

(A2) If all the levels of v are non-
compact, then M has one
end.

(A3) If both compact and non-
compact levels of ¢ exist si-
multaneously, then M has at
least three ends.

(b) Assume that all the levels of ¢ are
connected and compact.

(B1) If infy ¢ is attained, then
M has one end.

(B2) If infy @ is not attained,
then M has two ends.

(c¢) If all the levels are connected and
non-compact, then M has one
end.

(d) Assume that all the levels of ¢ are
connected and that ¢ admaits both
compact and non-compact levels
simultaneously. Then we have:



(D1) If infp ¢ is not attained,
then M has two ends.

(D2) If infy; ¢ is attained, then
M has at least two ends.

(e) Finally, if M has two ends, then
all the levels of p are compact.
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