# 科学研究費助成事業 研究成果報告書



平成 28年 6月 8日現在

機関番号: 15201

研究種目: 基盤研究(C)(一般)

研究期間: 2013~2015

課題番号: 25430150

研究課題名(和文)癌細胞のオートファジーと低酸素応答制御による免疫的細胞傷害抵抗性の克服

研究課題名(英文) Restoration of immune susceptibility to cancer cells regulated by autophagy and

hypoxic responses

研究代表者

原嶋 奈々江(HARASHIMA, Nanae)

島根大学・医学部・助教

研究者番号:60345311

交付決定額(研究期間全体):(直接経費) 4,100,000円

研究成果の概要(和文):抗癌治療薬として注目されるTRAILに抵抗性を示したヒト膵癌細胞において、感受性の回復とその機序を検討した。オートファジーを阻害するpifithrin-μと、あるいは抗アポトーシス分子BcI-xL阻害剤ABT-263とTRAILの併用で、膵癌細胞に対するTRAIL感受性が増強した。また低酸素誘導因子のうちHIF-1ではなく HIF-2をRNA干渉で抑制した膵癌細胞は、抗アポトーシス蛋白survivin発現を減少させ抗腫瘍効果を誘導した。よって、HIF-2、オートファジー、抗アポトーシス分子それぞれの阻害が、免疫療法の治療効果を高める可能性が示唆された。

研究成果の概要(英文): In the human pancreatic cancer cells which showed resistance to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), as an anticancer drug, I investigated to restore the sensitivity to TRAIL and elucidate its cellular mechanisms. Pifithrin-mu, an inhibitor of autophagy or ABT-263, a Bcl-2 family inhibitor which targets Bcl-2, Bcl-xL, and Bcl-w significantly enhanced the sensitivity to TRAIL in human pancreatic cancer cells. Knockdown of HIF-2alpha, but not HIF-1alpha, using siRNA increased the susceptibility of pancreatic cancer cells to TRAIL via decreased the expression of anti-apoptotic protein survivin, and induced antitumor effects. These results suggest that inhibition of HIF-2alpha, autophagy, or anti-apoptotic molecules can enhance the efficacy of immune therapies to cancers.

研究分野: 腫瘍免疫学

キーワード: 低酸素 癌 免疫 治療抵抗性 オートファジー

#### 1.研究開始当初の背景

### (1) TRAIL 治療抵抗性とオートファジー

Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) は、death receptor を介して癌細胞選択的にアポトーシスを誘導する。既に欧米の臨床試験において良好な成績が得られているが、治療抵抗性を示す癌腫も報告されており、治療効果を高める方法の開発が課題となっているである。そこで島根県に多い膵臓癌に着目し、ヒト膵癌細胞を用いて、heat shock protein (HSP) 70 の機能阻害効果や治療抵抗性に関与すると考えられ、且つ、オートファジー阻害効果を有する pifithrin-μと TRAIL の併用による抗腫瘍効果を検討する。

(2)癌の治療抵抗性における低酸素環境と オートファジー

オートファジーは、アポトーシスを逃れる ためだけでなく、低酸素や酸化ストレス応答 を含む様々な代謝ストレス下で癌細胞が生 き延びるための、cytoprotective な働きを担 っていると考えられている。脳腫瘍に関して 低酸素下により誘導されるオートファジー が、癌細胞生存や腫瘍浸潤血管の新生に働く ことが報告されたが、その他の癌種での詳細 な機序や、TRAIL 及び癌に対する抗体医薬に よる治療抵抗性と低酸素・オートファジーの 関連やメカニズム、加えて治療抵抗性の克服 法は確立されていない。癌微小環境における 低酸素は、アポトーシスの回避や治療抵抗性 に関わっていると考えられており、これらを 標的とした治療が検討されている。アポトー シスに関連する ROS の産生、ミトコンドリ アや小胞体でのストレス応答、低酸素応答の 相互作用メカニズムの解明は様々の癌種に おいて、治療抵抗性の克服に応用可能である と期待される。

#### 2.研究の目的

癌の治療において、癌細胞に対する薬剤の 効果を規定する要因である感受性あるいは 抵抗性は極めて重要である。特に臨床におい て、投与当初は有効性を示しても、次第に抵 抗性が生じ、十分な抗腫瘍効果が得られなく なる獲得耐性は克服すべき大きな課題であ る。治療抵抗性獲得の機序として、低酸素と いう微小環境、癌幹細胞の存在、免疫抑制性 細胞の増殖等が挙げられる。また、近年オー トファジーが抗腫瘍効果との関連において 注目されている。オートファジーは本来、栄 養飢餓やストレス応答で細胞内環境を維持 し、細胞生存に重要な役割を果たしている。 これまでに、癌細胞死と拮抗的に作用するオ ートファジーの抑制により、抗癌効果が増強 されることを明らかにした(Harashima, et al. Cancer Immunol Immunother, 2012; Inao, et al. Breast Cancer Res Treat, 2012). 一連の研究成果は、癌治療抵抗性の獲得にオ ートファジーが重要な役割を担っている可 能性を示唆している。本研究はこれらの研究

をさらに発展させる目的で、上皮性癌に対する免疫的細胞傷害を制御する分子機構、特にオートファジー、低酸素応答、酸化ストレス応答との関連性に重点をおき、癌治療抵抗性を克服する新しい治療法の確立を目標とする。

#### 3.研究の方法

(1) 膵癌細胞でオートファジーを抑制すると、TRAIL による癌細胞死の誘導が増強されることを阻害剤 pifithrin-μを用いて解析し、細胞死の機序を明らかにする。また、抗アポトーシス分子 Bcl-2 ファミリー阻害剤(ABT-199, ABT-263)を用いて、TRAIL 感受性に及ぼす影響について解析する。抗腫瘍効果は in vivo 実験でも検証する。

(2)低酸素環境での膵癌細胞の TRAIL 感受性への影響を、TRAIL 受容体である death receptor (DR)-4, DR5 の発現、アポトーシスおよびその細胞内経路についてフローサイトメトリーや蛋白分子発現によって検討する。

(3) 膵癌細胞での TRAIL 感受性増強と低酸素環境あるいはオートファジーの作用について、低酸素誘導因子 HIF-1αと HIF-2α分子ノックダウン細胞株の作成、オートファジーマーカーLC3-II と GFP の融合蛋白の作成を行う。これらを細胞内に遺伝子導入したのち、低酸素環境での培養や、オートファジー阻害剤、抗アポトーシス分子阻害剤とTRAIL の併用により、癌細胞死にそれぞれが与える影響とその機序について解析する。

(4)ヒト腫瘍抗原特異的細胞傷害性 T 細胞 (CTL)が膵癌細胞における TRAIL 感受性 に及ぼす影響を、健常人未梢血から誘導した癌反応性 CTL やγδT 細胞を用いて検討する。 (5)ヒト膵癌細胞を SCID マウスに皮下接種後 (xenograft モデル) 低酸素誘導因子の阻害、オートファジーの阻害、あるいは抗アポトーシス分子の阻害が TRAIL との併用によって、有意な抗腫瘍効果を示すか検証する。

#### 4. 研究成果

低酸素癌の代表である膵癌に関して、低酸 素環境ならびに低酸素誘導因子 hypoxia-inducible factor (HIF)-1α と HIF-2 αが TRAIL 感受性に及ぼす影響とそ の機序についてさらに検討した。HIF-2αを RNA 干渉で抑制すると、Panc-1 細胞の TRAIL 感受性が高まった。HIF-2αが TRAIL 抵抗性に重要な役割を果たしており、癌の低 酸素反応を阻害することにより、TRAIL によ る治療効果を高め得る可能性が示唆された。 Apoptosis Protein Array assay により HIF-1αの siRNA による RNA 干渉細胞より も HIF-2αを抑制した Panc-1 細胞において、 survivin 発現が減少することが新たに明ら かとなった。さらに HIF-2αを抑制した Panc-1 細胞に survivin を過剰発現させると、 TRAIL 抵抗性が回復することが確認できた。

また survivin 阻害剤と TRAIL の併用による 抗腫瘍効果を in vitro と in vivo の両方で認 めた。よって、ヒト膵癌細胞では  $HIF-2\alpha$ が survivin の発現を転写レベルで制御するこ とにより TRAIL 抵抗性をコントロールして いることが明らかとなった。また、オートフ ァジーは飢餓や低酸素など様々なストレス で誘導される蛋白分解システムで、細胞の恒 常性を保つ役割を担っているが、癌細胞にお いて一般的には、治療抵抗性に関与している 場合が多い。HSP70 の機能とともにオート ファジーも阻害する pifithrin-μ は、TRAIL によるデスシグナルに伴う NF-κB 経路の活 性化を阻害し、癌細胞表面での DR5 発現を 選択的に増強することにより、ヒト膵癌細胞 に対する TRAIL の抗癌効果を増強すること が明らかとなった(発表論文8) TRAIL 抵 抗性ヒト膵癌細胞株を TRAIL と 2 種類の Bcl-2 ファミリー阻害剤 (ABT-199, ABT-263)とともに培養すると、Bcl-xLを選 択的に阻害する ABT-263 併用時にのみ顕著 な抗腫瘍効果を認め、それは ER stress 経路 ではなく NF-κB 経路を介して癌細胞表面の DR5 発現を上昇させ、caspase 依存的なアポ トーシスを誘導した。in vivo においても、 ABT-263 と TRAIL の併用による顕著な抗腫 瘍効果が認められ、膵癌の有効な治療法にな る可能性が示唆された(発表論文1)。以上 より、治療抵抗性の獲得が問題となっている TRAIL を用いた膵癌治療において、HIF-2α の抑制、オートファジーの阻害、抗アポトー シス分子の阻害それぞれと TRAIL との併用 療法は、治療効果を高める有効な複合免疫療 法となりうる可能性が示唆された。

## 5 . 主な発表論文等 (研究代表者、研究分担者及び連携研究者に は下線)

#### 〔雑誌論文〕(計 8件)

Hari Y., <u>Harashima N.</u>, Tajima Y., and Harada M. Bcl-xL inhibition by molecular-targeting drugs sensitizes human pancreatic cancer cells to TRAIL. Oncotarget; 6 (39): 41902-41915, 2015. 査読あり。DOI: 10.18632/oncotarget.5881

Zhang M., <u>Harashima N.</u>, Moritani T., Huang W., and Harada M. The roles of ROS and caspases in TRAIL-induced apoptosis and necroptosis in human pancreatic cancer cells. PLoS One. May 22; 10(5): e0127386, 2015. 査読あり。

DOI:10.1371/journal.pone.0127386. eCollection 2015

Tongu M., <u>Harashima N.</u>, Tamada K., Chen L., and Harada M. Intermittent

chemotherapy can retain the therapeutic potential of anti-CD137 antibody during the late tumor-bearing state. Cancer Sci. 106(1):9-17, 2015. 査読あり。

DOI: 10.1111/cas.12568

Tamaki H., <u>Harashima N.</u>, Hiraki M., Aichi N., Nishimura N., Shiina H., Naora K., and Harada M. Bcl-2 family inhibition sensitizes human prostate cancer cells to docetaxel and promotes unexpected apoptosis under caspase-9 inhibition. Oncotarget. Nov 30;5(22):11399-412, 2014. 査読あり。DOI: 10.18632/oncotarget.2550

Harashima N., Minami T., Uemura H., and Harada M. Transfection of poly(I:C) can induce reactive oxygen species-triggered apoptosis and interferon-β-mediated growth arrest in human renal cell carcinoma cells via innate adjuvant receptors and the 2-5A system. Mol Cancer. Sep 17; 13:217, 2014. 査読あり。

DOI: 10.1186/1476-4598-13-217

Minami T., Minami T., Shimizu N., Yamamoto Y., De Velasco M., Nozawa M., Yoshimura K., Harashima N., Harada M., and Uemura H. Identification erythropoietin receptor-derived peptides having the potential to induce cancer-reactive cytotoxic T lymphocytes from HLA-A24(+) patients with renal cell Immunopharmacol. carcinoma. Int 20(1):59-65, 2014. 査読あり。 DOI: 10.1016/j.intimp.2014.02.018

Sekihara K., <u>Harashima N.</u>, Tongu M., Tamaki Y., Uchida N., Inomata T., and Harada M. Pifithrin-µ, an inhibitor of heat-shock protein 70, can increase the antitumor effects of hyperthermia against human prostate cancer cells. PLoS One, 14;8(11): e78772, 2013. 査読あり。DOI: 10.1371/journal.pone.0078772

Monma H., <u>Harashima N.</u>, Inao T., Okano S., Tajima Y., and Harada M. 12. The HSP70 and autophagy inhibitor pifithrin-μ enhances the antitumor effects of TRAIL on human pancreatic cancer. Mol Cancer Ther. 12(4), 341-51, 2013. 査読あり。

DOI: 10.1158/1535-7163. MCT-12-0954

### [学会発表](計29件)

1. <u>原嶋奈々江</u>、原田守. HIF-2αがヒト膵癌 細胞の TRAIL や T 細胞に対する細胞傷 害に対する免疫抵抗性を survivin を介し て制御する, 平成 27 年度 文部科学省

- 新学術領域研究 がん研究分野の特性 等を踏まえた支援活動 公開シンポジウム,2016年2月9日,一橋講堂 学術総合センター(東京都).
- 2. Mamoru Harada, Nanae Harashima. HIF-2α, but not HIF-1α, determines immune resistance of pancreatic cancer cells to TRAIL and T cells via survivin, 第 44 回日本免疫学会, 2015 年 11 月 18 日, 札幌コンベンションセンター(北海道札幌市)
- 3. 波里瑶子、<u>原嶋奈々江</u>他. Bcl-xL inhibition sensitizes human pancreatic cancer cells to TRAIL, 第74回日本癌学会総会, 2015年10月9日, 名古屋国際会議場(愛知県名古屋市).
- 原 嶋 奈 々 江 他 . HIF-2α regulates susceptibility of human pancreatic cancer cells to TRAIL- and T cell-mediated cytotoxicity via survivin, 第74回日本癌学会総会, 2015 年 10 月 9 日, 名古屋国際会議場(愛知県名古屋市).
- 5. Nanae Harashima, et al. Regulatory roles of HIF-2α and survivin in TRAIL- and γδT cell-mediated cytotoxicity of human pancreatic cancer cells, 19th JACI & 23rd MMCB, 2015 年 7 月 9 日~11 日, 東京大学 伊藤国際学術センター内伊藤謝恩ホール(東京都文京区).
- 6. Mamoru Harada, Nanae Harashima. The role of ROS and caspases in TRAIL-induced apoptosis and necroptosis in human pancreatic cancer cells, 19th JACI & 23rd MMCB, ICCIM 2015, 2015 年 7 月 9 日~11 日, 東京大学 伊藤国際学術センター内伊藤謝恩ホール(東京都文京区).
- 7. Mamoru Harada, Nanae Harashima, et al. Combination of low-dose and intermittent chemotherapy with cyclophosphamide and gemcitabine restores efficacy of anti-CD137 antibody therapy at the late tumor-bearing state. 第 43 回日本免疫学会, 2014 年 12 月 11 日, 京都国際会館(京都府京都市).
- 原嶋奈々江 他. HIF-2αの阻害はヒト膵がん細胞の TRAIL 感受性を増強する.
  第12回がんとハイポキシア研究会, 2014年 11 月 21 日, ホテルマリターレ創世佐賀(佐賀県佐賀市).
- Yoko Hari, <u>Nanae Harashima</u>, et al. Bcl-2 family inhibitors effectively sensitize human pancreatic cancer cells to TRAIL.
  45th Anniversary Meeting of APA

- (American pancreatic association) /JPS(日本膵臓学会), November 5-8, 2014, Hapuna Beach Prince Hotel, Big Island, Hawaii (U. S. A.).
- 10. Hiroyuki Monma, Nanae Harashima, et al. Autophagy inhibitors enhance TRAIL-induced antitumor effects on human pancreatic cancer cells, 45th Anniversary Meeting of APA (American pancreatic association) /JPS(日本膵臓学会), November 5-8 (Nov. 6th), 2014, Hapuna Beach Prince Hotel, Big Island, Hawaii (U. S. A.).
- 11. <u>原嶋奈々江</u> 他. Inhibition of HIF-2 sensitizes human pancreatic cancer cells to TRAIL, 第73回日本癌学会総会, 2014年9月27日, パシフィコ横浜(神奈川県横浜市).
- 12. 波里瑶子、<u>原嶋奈々江</u> 他. Bcl-2 family inhibitor ABT-263 unveils the resistance to TRAIL-induced apoptosis in human pancreatic cancer cells, 第73回日本癌学会総会, 2014年9月26日, パシフィコ横浜(神奈川県横浜市).
- 13. 玉木宏樹、<u>原嶋奈々江</u> 他. ABT-263 sensitizes PC3 prostate cancer cells to docetaxel, 第 73 回日本癌学会総会, 2014年9月25日, パシフィコ横浜(神奈川県横浜市).
- 14. 波里瑶子、<u>原嶋奈々江</u> 他. Bcl-2 family 阻害剤併用によるヒト膵癌細胞の TRAIL 抵抗性の克服, 第 18 回日本がん 免疫学会総会, 2014年7月31日, ひめぎ んホール(愛媛県松山市).
- 15. <u>原嶋奈々江</u> 他. 低酸素誘導因子 hypoxia-inducible factor 阻害によるヒト 膵癌細胞の TRAIL 抵抗性の増強,第 18 回日本がん免疫学会総会,2014年7月31 日,松山,ひめぎんホール(愛媛県松山市).
- 16. 門馬浩行、<u>原嶋奈々江</u>他. ヒト膵癌細胞に対する TRAIL と chloroquine の併用効果の検討,第 18 回日本がん免疫学会総会,2014年7月31日,ひめぎんホール(愛媛県松山市).
- 17. 門馬浩行,原嶋奈々江 他. Autophagy 阻害剤を用いたヒト膵癌に対する TRAIL の抗腫瘍効果増強の検討,第 69 回 日本消化器外科学会総会,2014 年 7 月 16日,ホテルハマツ/郡山市民文化センター(福島県郡山市).

- 18. 玉木宏樹、<u>原嶋奈々江</u> 他. Bcl-2 ファミリー阻害剤併用によるヒト前立腺癌細胞の Docetaxel 感受性の増強,日本薬学会第134年会,2014年3月30日,ホテル日航熊本(熊本県熊本市).
- 19. 原田守、<u>原嶋奈々江</u> 他. Long-lasting suppression of CT26 growth after low-dose chemotherapy with cyclophosphamide plus gemcitabine, followed by anti-CD137 antibody, 第 42 回日本免疫学会, 2013 年 12 月 12 日,幕張メッセ(千葉県幕張市).
- 20. Touko Inao, <u>Nanae Harashima</u>, et al. Poly(I:C), an innate adjuvant receptor ligand, can induce the antitumor effects on human breast cancer cells, 36th Annual SABCS, 2013 年 12 月 12 日, San Antonio (U. S. A.).
- 21. 頓宮美樹、<u>原嶋奈々江</u>他. Persistent antitumor immunity after the combination therapy with low-dose chemotherapy and anti-CD137 (4-1BB) antibody, 第72 回日本癌学会, 2013 年10月3日, パシフィコ横浜(神奈川県横浜市).
- 22. 関原和正、<u>原嶋奈々江</u> 他. A novel HSP-70 inhibitor pifithrin-µ enhances the antitumor effect of radiation on human prostate cancer, 第72回日本癌学会, 2013年10月4日, パシフィコ横浜(神奈川県横浜市).
- 23. <u>原嶋奈々江</u> 他. Restoration of the TRAIL susceptibility of human pancreatic cancer cells by inhibition of Bcl-xL, 第72回日本 癌学会, 2013年10月3日, パシフィコ横浜(神奈川県横浜市).
- 24. 門馬浩行、<u>原嶋奈々江</u> 他. Mechanisms of an HSP-70 inhibitor pifithrin-μ to enhance TRAIL-induced apoptosis of pancreatic cancer cells, 第 72 回日本癌学会, 2013 年 10 月 3 日, パシフィコ横浜(神奈川県横浜市).
- 25. 門馬浩行、<u>原嶋奈々江</u> 他. 膵癌細胞に 対する TRAIL と新規 HSP70 阻害剤 pifithrin-μの併用効果と作用機序,第 44 回日本膵臓学会,2013年7月26日,仙台 国際センター(宮城県仙台市).
- 26. 頓宮美樹、<u>原嶋奈々江</u>他.低用量 chemotherapy と抗 CD137 抗体の併用に より誘導される持続的な抗腫瘍免疫応 答,第17回日本がん免疫学会,2013年7 月5日,ANA クラウンプラザホテル宇部 (山口県山口市).

- 27. 門馬浩行、原嶋奈々江 他. HSP70 阻害剤 pifithrin-μが Panc-1 膵癌細胞に対する TRAIL 誘導性アポトーシスを増強する, 第 17 回日本がん免疫学会, 2013 年 7 月 5 日, ANA クラウンプラザホテル宇部(山口県山口市).
- 28. 原嶋奈々江 他. Poly(I:C)トランスフェクションによる ROS 産生を伴った癌細胞 死誘導とその活性化経路,第 17 回日本がん免疫学会,2013年7月5日,ANA クラウンプラザホテル宇部(山口県山口市).
- 29. 岡野慎士、<u>原嶋奈々江</u> 他. 切除肝細胞癌 における Programmed Death of Ligand 1(PDL1)発現の生物学的意義, 第 17 回日 本がん免疫学会, 2013 年 7 月 5 日, ANA クラウンプラザホテル宇部(山口県山口 市).

[図書](計 0件)

〔産業財産権〕

出願状況(計 0件)

名称: 発明者: 権利者: 種類: 番号:

出願年月日: 国内外の別:

取得状況(計件)

名称: 発明者: 権利者: 種類: 番号: 取得年月日: 国内外の別:

[その他]

ホームページ等

http://www.med.shimane-u.ac.jp/immunology/

- 6. 研究組織
- (1)研究代表者

原嶋 奈々江 (HARASHIMA, Nanae) 島根大学・医学部・助教 研究者番号: 60345311

(2)研究分担者

( )

| 研究者番号:   |   |   |
|----------|---|---|
| (3)連携研究者 | ( | ) |
|          |   |   |

研究者番号: