科学研究費助成事業 研究成果報告書

平成 28年 6月 3日現在

機関番号: 33939

研究種目: 基盤研究(C)(一般)

研究期間: 2013~2015

課題番号: 25504017

研究課題名(和文)代謝産物の排泄量を指標としたビタミン E 栄養状態の評価

研究課題名(英文)Evaluation of vitamin E status using urinary excretion of vitamin E metabolites

研究代表者

池田 彩子(Ikeda, Saiko)

名古屋学芸大学・管理栄養学部・教授

研究者番号:80308808

交付決定額(研究期間全体):(直接経費) 4,000,000円

研究成果の概要(和文): トコフェロールを摂取したときの代謝産物(CEHC)排泄量を調べた。研究 1: 健康な若年女性のトコフェロール摂取量と血清濃度、CEHC尿中排泄量を調べた。 -トコフェロール(T)摂取量と血清 T濃度の間に相関関係は見られたが、 CEHC排泄量と他の2者の間に相関関係は見られなかった。研究 2:健康な若年成人に -トコフェロール(T)100mg、 T 100mg、またはプラセボを摂取させた。 Tの異化は Tに比べて速いことが示唆された。研究 3:健康な若年女性に、 T 100mg、または T 100mgと T 50mgのどちらかを7日間摂取させた。 T摂取は Tの異化を促進することが示唆された。

研究成果の概要(英文): We examined the effect of tocopherol supplementation on its metabolite (CEHC) excretion. Study 1: Tocopherol intake, serum tocopherol concentration, and urinary excretion of CEHC of healthy young women was measured. Neither gamma-tocopherol intake nor serum gamma-tocopherol concentration was correlated with gamma-CEHC excretion, although gamma-tocopherol intake was correlated with serum gamma-tocopherol concentration. Study 2: Healthy young people took 100 mg of alpha-tocopherol, 100 mg of gamma-tocopherol, or placebo. The result that increases of serum tocopherol concentration and urinary CEHC excretion, suggested fast catabolism of gamma-tocopherol compared with alpha-tocopherol. Study 3: Healthy young women took gamma-tocopherol (100 mg/d), or gamma-tocopherol (100 mg/d) with alpha-tocopherol (50 mg/d), for 7 days. Gamma-tocopherol intake lowered serum alpha-tocopherol concentration and enhanced CEHC excretion, suggesting accerelation of alpha-tocopherol catabolism.

研究分野: 食生活学

キーワード: ビタミンE トコフェロール

1.研究開始当初の背景

(1) 日本人の食事摂取基準におけるビタ ミンE目安量

ビタミンEはラットの抗不妊因子として発見されたが、抗不妊活性はヒトのビタミンE栄養状態の指標にはなり得ない。現在ビタミンE栄養状態の指標として唯一用いられているのは、過酸化水素による溶血反応である。

血液中の -トコフェロール濃度が 12 μ mol/L 以下では、過酸化水素による溶血反応 が上昇する(Horwitt ら 1963)。

日本人の -トコフェロール摂取量と血液中の -トコフェロール濃度のデータ (Sasaki ら 2000, Hiraoka 2001, Maruyama ら 2001)から、現在の日本人の平均的なビタミンE摂取量であれば、血液中の -トコフェロール濃度を平均 22 μ mol/L 以上に維持できる。

以上の 2 点を根拠として、「日本人の食事 摂取基準 2010 年版」では、国民健康栄養調 査における摂取量の中央値をビタミンEの 目安量と定めている。これは、現在用いられ ている「日本人の食事摂取基準 2015 年版」 でも同じである。しかし、上記 は 50 年以 上前のデータである上に、in vitro での溶血 反応が体内のビタミンEの抗酸化能をどの 程度反映しているかは不明である。

(2) ビタミンE代謝産物

トコフェロールは、クロマン環を保持した まま側鎖が酸化されて短くなったカルボキ シエチルヒドロキシクロマン(CEHC)に変換 されて排泄されることが 1996 年以降に明ら かになっている(図 1)。トコフェロールから CEHCへの代謝の律速段階は第1段階の側鎖の 水酸化であり、この反応は、シトクローム P450 4F2 によって触媒される。さらに続いて 起こる 酸化によって、側鎖の短くなった CEHC となり、さらにそのほとんどはグルクロ ン酸抱合を受けて極性を増し、血液を介して 尿中へと排泄される。CEHC への代謝は一種の 薬物代謝反応であり、主に肝臓で行われる。 このように、過剰なトコフェロールは体内で 積極的に異化されるため、CEHC の尿中排泄量 がビタミンE栄養状態を反映する可能性が 考えられる。つまり、 -トコフェロール摂 取量、血液中の -トコフェロール濃度、お よびその代謝産物の尿中排量の3項目の相関 を調べることによって、 - トコフェロール をどの程度摂取すれば体内で飽和になるの かを推定でき、異化という観点から体内にお ける -トコフェロールの要求量を明らかに できると考えられる。

(3) ビタミンE同族体間の代謝の相互作用

ビタミンEはトコフェロールとトコトリエノールの2種類に大別され、それぞれに-、-、-、-体の4種類が存在する。8種類の同族体はいずれも試験管内では抗酸

化能を示すが、ラットで調べた生物活性は - トコフェロールが最も高く、それ以外の同 族体の生物活性は、試験管内での抗酸化活性 から期待されるほど高くない。これは、肝臓 に存在する -トコフェロール輸送タンパク 質(TTP)が、肝臓に運ばれたビタミンE同 族体から -トコフェロールを選択的に細胞 質から細胞膜へと運ぶためである。 - トコ フェロールはその後、リポタンパク質によっ て肝外組織へと輸送される。このため、私た ちはビタミンEとして -トコフェロールと - トコフェロールを同程度摂取しているが、 体内のビタミン E は圧倒的に - トコフェロ ールであり、 -トコフェロールは CEHC に異 化されて排泄される。トコトリエノールも - トコフェロールと同様に異化されやすい。 これらのビタミンE同族体は、日本人の食事 摂取基準では 2005 年版以降ビタミンEとし て換算していないが、 -トコフェロールに ない生理作用が近年期待されている。しかし、 これらの同族体が血中にどの程度存在し、ま た - トコフェロールの代謝にどの程度影響 するのか、相互作用はあるのかなど、明らか になっていない点は多い。

2.研究の目的

ビタミンEは、生体膜における過酸化脂質の生成を抑制する必須栄養素であり、ビタミンE代謝を明らかにすることは、我々の健康を維持・増進する上で重要である。本研究では、ヒトおよびラットにおけるビタミンE同族体の摂取量、体内濃度、および代謝産物を調べることによって、ビタミンEの代謝特性とその相互作用を明らかにし、代謝産物の排泄がビタミンE栄養状態の指標となり得るかどうかを検討する。具体的な目的は次の通りである。

健康な成人を対象にした観察研究によって、日常生活におけるビタミンEの摂取量、 血液中濃度、および代謝産物の尿中排泄量の 相関を明らかにする。

健康な成人を対象にした介入研究によって、ビタミンE同族体の代謝特性と、 - トコフェロール代謝に及ぼす他の同族体摂取の影響を明らかにする。

3.研究の方法

本研究は、「ヘルシンキ宣言」に基づく倫理的原則を遵守し、名古屋学芸大学研究倫理委員会の承認を得て実施した(2013.7.4 承認: 承認番号 78)

研究 1: ビタミン E 代謝についての観察研究

健康な若年女性 17 名を対象として、秤量 記録法による食事調査を 3 日間行った後に、 採血と採尿を行った。実験期間は、ビタミン 剤およびサプリメント等の服用を避け、喫煙 は禁止とした。その後、血清中の -および -トコフェロール濃度と尿中の -および -CEHC 排泄量を、HPLC 法によって測定した。 対象者は、あらかじめ研究内容について十分な説明をした上で、書面により同意の得られた学生および教職員である。採血は、指先からの簡易採血を被験者自身で行った。ヒト血清を扱う際は、衛生管理上適正な方法で行った。採尿は、朝9時から翌朝の9時までの24時間蓄尿を行い、尿量を記録した。血清のトコフェロール濃度と尿中のCEHC量は、それぞれ HPLC 法により測定した。

以上の方法で得られたトコフェロール摂取量、血液中のトコフェロール濃度、および尿中 CEHC 排泄量から、三者の間の相関関係を調べた。

研究2: -トコフェロール代謝について の介入研究

単回投与実験

健康な若年男女 6 名を対象として、 -トコフェロール 100mg、 -トコフェロール 100mg、 -トコフェロール 100mg、またはプラセボのカプセルを、朝食後に服用させた。0、3、6、9、12、24、36、48 時間後に採血を行った。また、カプセルを服用する3時間前から12時間後までは3時間ごとに、12時間後から48時間後までは12時間ごとに採尿を行った。実験期間は、ビタミン剤およびサプリメント等の服用を避け、喫煙は禁止とした。血清中の -および -トコフェロール濃度と尿中の -および-CEHC 排泄量を測定した。

服用したカプセルに封入したトコフェロールには、合成品ではなく天然型のものを用いた。採血方法および分析方法等については、研究1と同じである。

7日間服用実験

健康な若年女性 17 名を対象として、秤量記録法による食事調査を 3 日間行った後に、採血と採尿を行った。次の 7 日間は、 -トコフェロール 100mg を含むカプセル 1 粒を毎日朝食後に服用し、最後の 3 日間は食事調査を行った。7 日目には採血と採尿を行った。7 日目には採血と採尿を行った。6 週間以上のウォッシュアウト期間を設けた後、カプセルを -トコフェロール 50mg を含むものに変えて、再度同様の実験を行った(クロスオーバー法)。実験期間は、ビタミン剤は禁止とした。血清中の -および -CEHC 排泄量を測定した。

服用したカプセルに封入したトコフェロールには、合成品ではなく天然型のものを用いた。対象者と食事調査法の選択、採血、採尿、分析方法等については研究1と同じである。

4. 研究成果

研究1:ビタミンE代謝についての観察研究

実験期間に対象者が食事から摂取したエネルギー量と -トコフェロール量は、それぞれ 1,610~1,680kcal/日と 6.0~6.2mg/日であった。 -トコフェロールの摂取量、血清濃度、代謝産物の排泄量の三者の間には、有意な相関関係は見られなかった。一方、-トコフェロールについては、その摂取量と血清濃度の間に有意な正の相関関係が確認された。

以上の結果から、 および -トコフェロールの代謝産物の排泄量と摂取量、ならびに血清濃度との関係を明らかにすることはできなかった。

研究2; -トコフェロール代謝について の介入研究

単回投与実験

-トコフェロール 100mg を服用したときの血清中の -トコフェロール濃度は、6~12時間後にかけて上昇し、その後は 48時間後まで緩やかに低下した。12時間後の濃度は43.7nmol/mL であった(プラセボ29.9nmol/mL)。一方、 -トコフェロール100mg を服用したときの血清中の -トコフェロール濃度は、6時間後から12時間後にかけて上昇し、上昇のピークは9時間後であった。9時間後の -トコフェロール濃度は、13.2nmol/mLであった(プラセボ2.4nmol/mL)。

- トコフェロール 100mg を服用したときの -CEHC 排泄量は、12~24 時間後に最も多かった。一方、 -CEHC 排泄量は、6~12 時間後に最も多かった。

以上の結果から、 -トコフェロール代謝は -トコフェロール代謝に比べて速いことが示唆された。

7日間服用実験

-トコフェロール 100mg の摂取によって 血中 - トコフェロール濃度は 3.1 から 10.8 μmol/L に上昇し、 -トコフェロール代謝産 物排泄量は 5.3 から 32.6 µ mol/g クレアチニ ン/日に増加した。この時、血中 -トコフェ ロール濃度は低下し、 - トコフェロール代 謝産物排泄量は増加した。一方、 ェロール 50mg の摂取によって血中 - トコフ ェロール濃度は 28.0 から 36.7 µ mol/L に上 昇し、 -トコフェロール代謝産物排泄量も 1.1 から 5.3 μ mo l/g クレアチニン/日に増加 した。 -トコフェロールの同時摂取は血中 - トコフェロール濃度を低下させたが、 トコフェロール代謝産物排泄量には影響を 与えなかった。

以上の結果から、 - トコフェロールと - トコフェロールは互いの代謝に影響を与えることが示唆された。

5. 主な発表論文等

(研究代表者、研究分担者及び連携研究者に

は下線)

〔学会発表〕(計1件)

内田友乃,小池泰介,<u>池田彩子</u>「若年女性における -トコフェロール代謝についての検討」第 70 回日本栄養・食糧学会大会,演題番号 2E-14p,武庫川女子大学,2016.5.13-15.

6. 研究組織

(1)研究代表者

池田 彩子(IKEDA SAIKO) 名古屋学芸大学・管理栄養学部・教授 研究者番号:80308808

(2)研究分担者

野村 早 (NOMURA SAKI) 名古屋学芸大学・管理栄養学部・助手(平成 27 年 9 月まで) 研究者番号: 9 0 5 8 8 9 5 6