科研費

科学研究費助成事業 研究成果報告書

平成 27 年 6 月 5 日現在

機関番号: 12101

研究種目: 挑戦的萌芽研究 研究期間: 2013~2014

課題番号: 25540119

研究課題名(和文)カオス性の異なる1/fゆらぎの感性評価と発生手法の開発

研究課題名(英文) KANSEI Evaluation of 1/f Fluctuations with Different Chaotic Properties and

Development of Method for Generation

研究代表者

山田 光宏 (Yamada, Mitsuhiro)

茨城大学・工学部・准教授

研究者番号:10272113

交付決定額(研究期間全体):(直接経費) 800,000円

研究成果の概要(和文): カオス的な1/fゆらぎとカオス的でない1/fゆらぎを用いた歩行のヒューマンアニメーションに関して、感性評価実験による比較検討を行った。CGキャラクタの歩行動作には、Microsoft社Kinectを用いたモーションキャプチャにより取得した人間の歩行動作の1周期の時系列データを用い、1/fゆらぎによりCGキャラクタの歩幅および腕の振り幅を変化させた。被験者による評価を分析した結果、カオス的でない1/fゆらぎを用いた場合のほうが、CGキャラクタの動作が、よりリアルであった。また、カオス的な1/fゆらぎの発生手法に関して検討した。

研究成果の概要(英文): Human walking animations using chaotic and non-chaotic 1/f fluctuations were investigated by subjective comparison. The motion data of human walking were obtained using Microsoft Kinect, and a period of repetitive walking was selected. The motion of the CG character was computed with the selected data and the 1/f fluctuations. The 1/f fluctuations were applied to the lengths of the stride and the arm swing, so that the lengths varied. Animations were evaluated by subjective comparison. As a result, the case with the non-chaotic 1/f fluctuation was more realistic than the case with the chaotic 1/f fluctuation. Method for generation of chaotic 1/f fluctuation was also investigated.

研究分野: 感性情報学

キーワード: 感性評価 1/fゆらぎ カオス性 ヒューマンアニメーション 歩行

1.研究開始当初の背景

従来、人間の動作や自然環境に観測される 1/f ゆらぎは、コンピュータグラフィックス (CG)による自然なアニメーションや快適な 人工環境の創造などに適用されてきた。ここ で、1/f ゆらぎとは、パワースペクトル密度 が周波数 f に逆比例するゆらぎである。カオ ス性の有無を検定する標準的なアルゴリズ ムである相関次元推定法[1]によれば、1/f ゆ らぎの時系列は、カオス性を有する、すなわ ちカオス的な時系列と、カオス性の無い、す なわちカオス的でない時系列とに明確に区 別される。いずれも、従来、自然なアニメー ションや、自然で快適な人工環境の創造に用 いられてきた。しかしながら従来は、スペク トルが 1/f 型であることのみが注目され、カ オス性の有無に関して考慮せずに 1/f ゆらぎ が適用されてきた。このため、自然さ、快適 さなどとカオス性の有無との関連に関する 感性評価による検討がなされておらず、いず れの 1/f ゆらぎが各応用課題に最適であるの か明らかになっていない。また、従来、およ そ 1/f ゆらぎとなるカオス時系列を発生する 手法はあるが、そのスペクトルは正確な 1/f 型とはならない。

2.研究の目的 本研究の目的は、次の二つである。

- (1)カオス的な 1/f ゆらぎとカオス的でない 1/f ゆらぎのいずれが自然さなどの向検 に適切であるか、感性評価により比較検討し明らかにする。1/f ゆらぎを用いる例って、近年、映画やゲームなどのエンターテインメントの分野において制作ではカーションを採り上げる。より自然でクタによるとい、リアルな動作の CG キャラクタの動作へ 1/f ゆらぎを用いる場合に関して比較検討する。
- (2)従来の手法に比較し、より正確な 1/f 型 スペクトルとなるカオス的な 1/f ゆらぎ の発生手法を明らかにする。

3.研究の方法

(1) ヒューマンアニメーションにおける CG キャラクタの「動作のリアルさ」と「1/f ゆらぎのカオス性の有無」の関連の感性評価による検討

CG キャラクタの動作を、より人間らしくするため、本研究では、実際の人間の動作をモーションキャプチャによりデータ化し、それに基づきヒューマンアニメーションの制作を行い、研究を実施する。また、本研究代表者らによる、上半身のみの動作となる拍手のヒューマンアニメーションにおける、「動作のリアルさ」と「1/f ゆらぎのカオス性の有無」の関連の感性評価による検討に関する先行研究論文[2]が学術誌に掲

載され公開されたため、より新規性の高い、 全身での動作となる歩行に関する研究を実 施する。研究は下記の手順で実施する。

動作の時系列データ化

比較的容易にモーションキャプチャが可能な Kinect (物品費により購入)により人間の動作を時系列データ化する。

ヒューマンアニメーションの制作

POV-Ray を用いてレンダリングを行い、 カオス的な 1/f ゆらぎを用いた場合とカ オス的でない 1/f ゆらぎを用いた場合の ヒューマンアニメーションを制作する。

感性評価実験および分析

被験者に制作したヒューマンアニメーションを提示し、感性評価実験を行う。結果を因子分析、有意差の検定、効果量の算出などにより分析し、比較検討することにより、CG キャラクタの「動作のリアルさ」と「1/f ゆらぎのカオス性の有無」との関連に関して明らかにする。

(2)従来手法より正確な 1/f 型スペクトルの カオス的な 1/f ゆらぎの発生手法の開発

セルオートマトンを用いた手法の適用の 検討

本研究代表者らによって提案されたセルオートマトンを用いた正確な 1/f 型スペクトルを発生する手法に関する先行研究[3]では、カオス的でないゆらぎである乱数による白色雑音を用いた。乱数による白色雑音の代替として、1次元変形ベルヌーイ写像[4]によるカオス時系列による白色雑音の適用に関して検討する。

その他の手法の検討

1 次元変形ベルヌーイ写像[4]によるカオス時系列を用いた、他の適切な手法に関して検討する。

4.研究成果

(1) ヒューマンアニメーションにおける CG キャラクタの「動作のリアルさ」と「1/f ゆらぎのカオス性の有無」の関連の感性評価

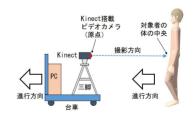
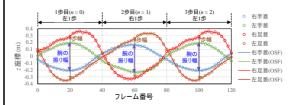
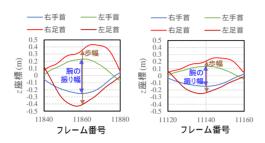
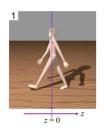


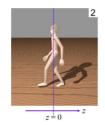
図1 標認点の時系列データの取得手法



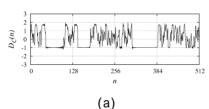

図2 取得した時系列データの例

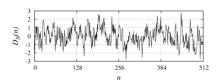
による検討

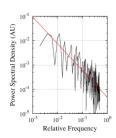

単一の CG キャラクタによる研究 まず、単一の CG キャラクタによる研究 を次の手順で実施した。

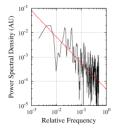

i)動作のデータ化

Microsoft 社 Kinect を用いた低コストなモーションキャプチャのプログラ




(a) (b) 図3 足首と手首の Z 座標の時系列データ: (a) 歩幅が大きいとき , (b) 歩幅が小さいとき



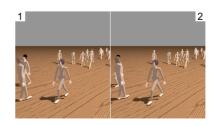

(a) (b) 図 4 フレームの例:(a)歩幅が大きいとき (b)歩幅が小さいとき

(b) 図 5 波形:(a)カオス的な 1/f ゆらぎ,(b)カオス的でない 1/f ゆらぎ

(a) (b) 図 6 パワースペクトル : (a)カオス的な 1/f ゆらぎ , (b)カオス的でない 1/f ゆらぎ

ム開発を進め、図1に示すような、全身の動作のモーションキャプチャが可能なシステムを構築した。本システムにより、比較的複雑な全身での動作となる歩行について、その1周期での身体各部位の時系列データを取得した。取得した時系列データのうち、両手首と両足首のz座標について図2に示す。

ii)ヒューマンアニメーションの制作


取得した時系列データと 1/f ゆらぎを 用いた繰り返し動作のヒューマンアニ メーションの制作手法を考案し、カオス 的な 1/f ゆらぎを用いた場合(AC)とカオ ス的でない1/f ゆらぎを用いた場合(AN) の、単一の CG キャラクタによる歩行の ヒューマンアニメーションを制作した。 その際、人間の歩行において歩幅に 1/f ゆらぎがみられることから[5]、CG キャ ラクタの歩幅の制御に1/f ゆらぎを用い た。また、足に連動して動く腕の振り幅 にも 1/f ゆらぎを用いた。アニメーショ ンの制作に用いた1/f ゆらぎの波形を図 5に、それらのパワースペクトルを図6 に示す。図に示すように、パワースペク トルは同様であるが、波形は異なる。

iii)感性評価実験および分析

図7に示す感性評価票を用いて行ったACとANを比較する感性評価実験により得られた心理的評価に対して、平均値と効果量を算出し、因子分析と有意差の検定を適用した。その結果、ACに比較してANのほうが、CGキャラクタの動作が、よりリアルであった。「動作のリアルさ」

	2	1	0	-1	-2	
飽きのくる						飽きのこない
アクティブな						アクティブでない
生き生きしていない						生き生きした
印象的でない						印象的な
違和感のない						違和感のある
おもしろい						つまらない
おもちゃっぽい						本物っぽい
重々しい						軽やかな
機械的な						機械的でない
元気一杯な						元気のない
心地わるい						心地よい
不自然な						自然な
親しみやすい						親しみにくい
好きでない						好きな
単調な						複雑な
滑らかな						滑らかでない
人間らしくない						人間らしい
メリハリのある						メリハリのない
ありふれた						めずらしい

図 7 感性評価票

(a) (b) 図8フレームの例: (a)A, (b)AN.

には動作の複雑さも関わっており、より リアルな動作であったカオス的でない 1/f ゆらぎを用いた場合のほうが、より 複雑な動作として被験者に評価された。 カオス的でない 1/f ゆらぎは、図 5(b) に示すように不規則な状態が続くため、 図 5(a)に示すように定常状態と不規則 な状態が間欠的に発生するカオス的な 1/f ゆらぎに比較し、より「複雑な」も のとして被験者に評価されたと考えら れる。上半身と下半身が連携した比較的 複雑な全身動作であると考えられる歩 行においては、より「複雑な」動作のほ うが合っており、カオス的でない 1/f ゆ らぎを用いた場合のほうが、よりリアル な動作であったと考えられる。

複数の CG キャラクタによる研究

次に、実際のヒューマンアニメーションと同様な複数の CG キャラクタによる歩行のヒューマンアニメーションにおいて、カオス的でない 1/f ゆらぎの有効性の確認を次の手順で実施した。

i)ヒューマンアニメーションの制作

形状の異なる複数の CG キャラクタを制作した。各 CG キャラクタの歩行動作には、 で取得した時系列データを用いた。取得した時系列データとカオス的でない 1/f ゆらぎを用いた場合(AN)と、1/f ゆらぎを用いない場合(A)の、複数の CG キャラクタによる歩行のヒューマンアニメーションを制作した。制作したヒューマンアニメーションのフレームの例を図 8 に示す。

ii)感性評価実験および分析

AN と A について、感性評価実験により 心理的評価に関する比較検討を実施し た。得られた評価に対して、平均値と効 果量の算出、因子分析と有意差の検定を 適用した結果、AN のほうが、よりリアル な動作であったため、カオス的でない 1/f ゆらぎの有効性を確認した。

従来は、1/f ゆらぎを用いた人工環境の 構築などにおいてスペクトルが 1/f 型であ ることのみが注目されてきたが、本研究成 果により、カオス性の有無という新たな観 点を導入した。1/f ゆらぎにおけるカオスと の有無は、人間の感性における「複雑さ」 と関連しており、そのために適切なカオス 性の有無が異なることが新たに分かった。 以上の新規性を有する本研究成果に考えら 出該分野の今後の進展へ貢献すると考えら れる。

(2)従来手法より正確なスペクトルのカオス 的な 1/f ゆらぎの発生手法の開発

セルオートマトンを用いた手法の適用の 検討

本手法は、白色雑音により複数の確率的

セルオートマトンを動作させ、ローレンツ 型スペクトルとなる各セルオートマトン の出力を加算することにより 1/f 型のスペクトルを得るものである。その白色雑 に 1 次元変形ベルヌーイ写像によるカオス的なゆらぎを用いてセルオートしなで動作させることを検討した。しよりり、 を動作させることを検討した。しより、 により返す間欠性が 感性評価に影響することがわかり、そのような間欠性を有するカオス的な 1/f ゆらざが得られない本手法は適切ではないと考えられた。

その他の手法の検討

1次元変形ベルヌーイ写像[4]によるカオ ス的な 1/f ゆらぎ時系列は、低域において は比較的正確な 1/f 型スペクトルとなる。 このため、1次元変形ベルヌーイ写像[4]に よるカオス的な 1/f ゆらぎ時系列をカット オフ周波数 fcの低域ディジタルフィルタに 通した後、間引きにより標本化周波数を2fc とし、より正確な1/f型スペクトルを得た。 また、相関次元推定法によるカオス性の検 定の結果、カオス性を有することを確認し た。fcを低くするとスペクトルはより正確 な 1/f 型スペクトルになったが、波形の変 化がより大きくなった。スペクトルの正確 性と波形の変化はトレードオフの関係にあ り、fc は、標本化周波数に対する相対周波 数で 0.02 が適切であることが分かった。

<引用文献>

- [1] Grassberger, P. and Procaccia, I.: Measuring the strangeness of strange attractors, Physica D, 9, Issues 1-2, 189-208, 1983.
- [2] 山田光宏,井上裕貴,野月悠平,大和田祥平,金沢文恵,中村雅人:カオス性の異なるゆらぎを用いた拍手のアニメーションの感性評価,日本感性工学会論文誌,12,3,pp.389-396,2013.
- [3] Yamada, M. and Agu, M.: A digital 1/f noise generator utilizing probabilistic cellular automata, IEICE Trans. Fundamentals, E81-A, 7, 1512-1520, 1998.
- [4] Aizawa, Y., Kohyama, T.: Asymptotically non-stationary chaos, Prog. Theor. Phys., 71, 4, 847-850, 1984.
- [5] Terrier, P., Turner, V., and Schutz, Y.: GPS analysis of human locomotion: Further evidence for long-range correlations in stride-to-stride fluctuations of gait parameters, Human Movement Science, 24, pp.97-115, 2005.

5 . 主な発表論文等

(研究代表者、研究分担者及び連携研究者に

は下線)

[学会発表](計2件)

山田光宏、栗田大地、中島千紘、『1/f ゆらぎを用いた歩行のヒューマンアニメーションの感性評価』第10回日本感性工学会春季大会、2015.3.28、京都女子大学(京都府・京都市)

山田光宏、大内貴弘、西木戸亜美、箱崎翔 太、『カオス性の異なる 1/f ゆらぎを用いた歩行のアニメーションの感性評価』、第9回日本感性工学会春季大会、2014.3.22、北海道大学(北海道・札幌市)

6. 研究組織

(1)研究代表者

山田 光宏 (YAMADA MITSUHIRO) 茨城大学・工学部・准教授 研究者番号:10272113

(2)研究分担者 無し

(3)連携研究者

無し