科学研究費助成專業 研究成果報告書

平成 27 年 6 月 1 5 日現在

機関番号: 13601

研究種目: 挑戦的萌芽研究 研究期間: 2013~2014

課題番号: 25620171

研究課題名(和文)極限微小空間におけるハイドロゲルの体積相転移及び揺らぎの臨界現象の解明

研究課題名(英文)Critical behavior and volume phase transition of hydrogels in a micro-space

研究代表者

佐藤 高彰 (SATO, Takaaki)

信州大学・学術研究院繊維学系・准教授

研究者番号:20373029

交付決定額(研究期間全体):(直接経費) 3,100,000円

研究成果の概要(和文):本研究は、微小空間において温度応答ハイドロゲルが示す体積相転移挙動の観測と臨界現象の定量評価法の確立や、臨界挙動の普遍性とその破れについて、背後にある分子機構も含め解明することを目標とした。小角・広角X線散乱法、動的光散乱法、誘電分光法を用い、ポリN-イソプロピルアクリルアミドの水溶液中でのコイル-グロビュール転移に関して、主鎖間のミクロ相関、溶媒の同位体効果や分子ダイナミクスから見た脱水和挙動等の情報を得た。次に、温度応答高分子を架橋した一群のゲル微粒子を合成し、これらが示すバルクとは異なる臨界挙動を実験的に捉えることに成功した。この特異な現象の理論的解明へと発展させている。

研究成果の概要(英文):This study aimed at establishing a renovated technique for observation and quantitative evaluation of critical phenomena and volume phase transition that thermos-responsive hydrogels exhibit in an extreme micro-space. We targeted better understanding of their critical behavior, involving universality, its breakage, and the underlying molecular mechanisms. We used small- and wide-angle X-ray scattering, dynamic light scattering, and dielectric relaxation spectroscopy. First, we focused on a coil-to-globule transition of poly N-isopropylacrylamide (pNIPAm) in aqueous media, and gained deeper insights into microscopic correlation between the main chains, solvent deuterium isotope effects, and dehydration behavior. Then, we synthesized a series of microgel particles by crosslinking the thermo-responsive polymers. Using the static and dynamic scattering techniques, we succeeded in grasping the gist of their critical behavior, which was quantitatively different from those of bulk gels.

研究分野: 化学物理

温度応答高分子 ゲル微粒子 小角広角X線散乱法 相関長 臨界現象 フラクタル 誘電分光 疎水性 相互作用

1.研究開始当初の背景

1978 年に遡る MIT の故・田中豊一教授らによる「高分子ゲルの体積相転移」の発見 [PRL40,820(1978)]以来、高分子ゲルを外部環境(温度・電場・pH・光など)に応答する機能性材料(例えば、アクチュエータ、刺激応答型 DDS、細胞培養基材、センサー材料)として利用する研究が活発に行われている。

一方、サブミクロンサイズ(直径 100nm~1µm 程度)のハイドロゲル微粒子は、溶媒中に安定に分散し、同種の高分子からなるバルク材料とは異なる物性を示すことから、物性制御や機能材料化に関する研究が盛んに行われてきた[H.Kawaguchi, *Prog.Polym.Sci.* 25, 1171 (2000); A.Lyon et al., *Angew.Chem.Int.Ed.* 44, 7686 (2005)]。

ポリ N-イソプロピルアクリルアミド (pNIPAm)を架橋したバルクゲルの体積相転移に関する柴山らの先駆的な小角中性子散乱(SANS)研究 [JCP 97,6829 (1992)] では、その臨界挙動はイジング模型に良く従うことが示された。厚み 20μm 程度の pNIPAm マクロポーラスゲルの最近の研究においても、同様の結果が報告されている[Macromolecules 43, 2009 (2010)]。

ここで、ゲル構造をゲルネットワークの相関長と比較して100倍以下になるような微小空間内に制限した場合、臨界温度付近で相関長や密度揺らぎの大きさがどのような臨界挙動を示すか?さらには、ミクロ空間内の体積相転移は、バルクゲルの場合と同様に、イジング模型や気相液相転移の普遍性と一致するのか?と言った疑問が生じる。

2. 研究の目的

本研究では、微小空間におけるゲルの体積 相転移挙動の観測と臨界現象の定量評価法 の確立、さらには、微小空間内におけるゲル の臨界挙動の普遍性やその破れについての 情報を得て、そのメカニズムを解明すること を最終的な目標として、以下を研究期間内に 行う課題として設定した。

小角・広角 X 線散乱同時測定(SWAXS)による pNIPAm 水溶液の臨界挙動の微視的側面の解明(空間スケールの拡張・溶媒効果解明)。

誘電分光法による pNIPAm 水溶液中のバルク水と水和水の定量と相転移温度近傍の脱水和挙動の観測。

単分散性の高いサブミクロンサイズのゲル ル微粒子合成。

動的光散乱データから求められる流体力 学半径と微粒子体積の微係数評価によるミ クロゲルの相転移温度決定。

小角・広角 X 線散乱(SWAXS)の絶対強度同時測定によるミクロゲル (ゲル微粒子)の内部構造評価法の確立と臨界挙動の解明。

(1) 代表的な感温性高分子であるポリ N-イソプロピルアクリルアミド(pNIPAm)は、水中で下限臨界溶液温度 LCST を有し、昇温に伴い32°C 付近でコイル・グロビュール転移を起こす。まず、pNIPAm 水溶液の臨界挙動と相転移に伴うミクロ構造に関する理解をさらに進展させることを本研究計画の最初の目的とした。これらは、感温性高分子を架橋して合成したゲルやミクロゲル微粒子の臨界挙動を理解するための礎石となる。

一般に、高分子溶液やゲルの小角散乱研究では、散乱ベクトル(q)の上限が $5nm^{-1}$ 以下である場合が多いが、本研究では、小角領域のみならず、 $20nm^{-1}$ を超える広角領域を網羅する小角・広角 X 線散乱測定を行い、高分子主査間のミクロな相関や溶媒効果 $(H_2O,\ D_2O)$ も含めて、pNIPAm のコイル・グロビュール転移を構造学的に精査する計画を立てた。

(2)ゲル構造をメッシュサイズ(相関長)が無視できない程度の微小空間に制限した場合、相転移温度近傍でゲル内部の密度揺らぎや相関長がどのような臨界挙動を示すか?については、基礎・応用の両面から興味深い。

この問題に取り組むため、外部環境に応答して可逆的に膨潤収縮するサブミクロンサイズのハイドロゲル微粒子を合成し、動的光散乱法や小角・広角 X 線散乱法を用いて、微小空間内におけるゲルの体積相転移挙動を観測、その内部構造や、臨界現象を定量評価することを目的とした。

3.研究の方法

(1) 水溶媒中での pNIPAm の相分離は疎水性相互作用が主要な原動力と考えられるが、高分子網目による密度揺らぎの自己相似性、すなわちフラクタル性の現れであるCrnstein-Zernike (OZ)型の散乱寄与だけであるく、より広角領域に観測されると予想される主鎖間のミクロな構造相関や高分子内部の動径分布なども含めて検討することが重要である。このため、pNIPAm 水溶液の静的構造評価には、小角・広角 X 線散乱の同時測定(SWAXS)を用いた。水素結合液体の協同的な再配向運動や水和した高分子鎖のダイナミクスを評価可能な誘電分光法を用いて、温度上昇に伴うpNIPAm 鎖の脱水和挙動の追跡も同時に行った。

(2) モノマーとして N-イソプロピルアクリルアミド(NIPAm)およびアクリル酸(AAc)、架橋剤としてメチレンビスアクリルアミド(BIS)を用い、水溶媒中での沈殿重合法によって単分散性の高いゲル微粒子を合成した。なお、ゲル微粒子の合成は、ソフト微粒子合成の高い技術を有する研究連携者・鈴木大介准教授らのグループの全面的な協力を得ながら行った。

(3)ゲル微粒子が示す温度に応答した膨潤収縮挙動を、簡便かつ精度高く評価するため、流体力学半径 $R_{\rm H}$ の温度依存性を狭い温度間隔で計測し、ゲル微粒子の実効体積 $V^{\rm eff}=4\pi R_{\rm H}^3/3$ に対し、温度微分量を定義した。

不連続的な体積変化を示さないゲル微粒子についても、 R_H の温度に対する微係数に極大を与える温度を相転移温度 T_C とする評価手法を新たに取り入れ、ゲル微粒子の相転移温度を迅速に決定し、静的散乱測定データの解析にフィードバックして研究効率を高める工夫を行った。

(4)合成した架橋剤密度の異なるゲル微粒子に対し、 $0.05 \le q/\text{nm}^{-1} \le 25$ の広大な空間スケールを網羅する小角・広角度散乱の絶対強度・同時測定を実現した。透過率補正や溶媒バックグラウンド除去、水の散乱強度を標準試料とした絶対強度化などを行った。

4. 研究成果

(1)感温性高分子はモノマー単位に親水基と 疎水基の両者を有することから、その水溶液 は下部臨界完溶温度(LCST)を持ち、昇温に伴 い高分子鎖は疎水性相互作用によってコイ ル-グロビュール転移を示す。小角散乱法と誘 電緩和分光法は、それぞれ、このような臨界 現象に関連する静的構造と分子ダイナミク スを明らかにするために有効な手法である。

pNIPAm溶液に関する既往のSANS研究は、 D_2O 中で行われ、測定領域が概ね $q<2/\text{nm}^{-1}$ に限定されていたため、臨界挙動に伴う高分子主鎖間のミクロな構造相関や溶媒の同位体効果についてはよく理解されていない。本研究では、サブナノ領域の微細構造まで網羅すべく、X 線散乱の小角・広角同時測定 (SWAXS)を行い、13wt%の pNIPAm(平均分子量 25 k Da)に対し、 $0.07 \le q/\text{nm}^{-1} \le 20$ における絶対強度測定を H_2O と D_2O 中で行った。

コイル状 pNIPAmの相関長 ξ と OZ 散乱の前方散乱強度 $I_{OZ}(0)$ は臨界温度 T_c に向けて発散したが、これは、水リッチドメインとポリマーリッチドメインにナノスケールでミクロな相分離を生じることを意味する。その際の臨界ベキ指数については、既往の中性子散乱の結果との良い整合性がみられた。

広角領域に及ぶ測定を行ったことにより、それぞれ、側鎖を介した主鎖間の相関及び高分子鎖内の動径分布関数に由来すると考えられる 2 つの干渉性ピークを新たに観測した。小角側ピーク($3 < q^*(T)/nm^{-1} < 6, q^*$ はピーク位置に相当する散乱ベクトル)は、温度 Tに強く依存しピーク位置の温度依存性から、主鎖間距離 $d^* \approx 2\pi/q^*$ は、相関長 ξ の発散とは逆に、温度 Tに比例して減少し、分子鎖がグロビュール状となる二相領域 $T > T_C$ (T_C は相転移温度)では約 1 nm の一定値に収束するこ

とが明らかとなった。側鎖間の疎水性相互作用の強まりによって、高分子鎖間の平均距離が減少することを反映していることが強く示唆される。 $T_{\rm C}$ は、 $D_{\rm 2}O$ 中で約1度高いが、その他の構造学的特徴は $H_{\rm 2}O$ 中と本質的な差異は無いことを確認した。

一方、200MHz から 90GHz の周波数範囲 で測定した 5wt%pNIPAm 水溶液の誘電緩 和スペクトルは 2 つの緩和過程の重ね合わ せで精度良く記述することが出来た。約8ps (25°C)の緩和時間を有するバルク水の水素 結合ネットワークの協同的な組み換え過程 の他に、これより数倍遅い緩和時間を持つ緩 和過程の存在が明らかになった。これは pNIPAM 鎖及びこれに溶媒和した水(=水和 水)の分子運動を反映していると考えられる。 水和層の緩和時間は、臨界温度付近において 温度に対して逆比例する臨界減速を示した。 バルク水の緩和強度の温度依存性に Cavell 理論を適用した水和解析からは、T₀の約4°C 下から水和数の顕著な減少が観測され、イソ プロピル基間の疎水性相互作用による脱水 和と主鎖間距離(d*)の減少が密接に関連して いることを示した。

(2) 温度に応答して可逆的に膨潤収縮する直径約200nm~500nmの単分散ハイドロゲル微粒子を沈澱重合法によって合成した。重合時に、アニオン性界面活性剤を加えることで、膨潤時の直径が200nm程度のゲル微粒子を合成することが出来た。

小角・広角散乱法と動的光散乱法を用いて、 微小空間内におけるゲルの体積相転移挙動 を観測、内部構造揺らぎの臨界現象の定量評 価を試みた。また、架橋剤濃度や粒子直径の 違いがゲル微粒子の臨界挙動に及ぼす影響 を調べた。

pNIPAm $\succeq N,N$ '-Methylenebis(acrylamide) \hbar らなるハイドロゲル微粒子の分散液につい て SAXSess camera (Anton Paar, Austria)を用い、 0.05 ≤ *a*/nm⁻¹ ≤ 25 の散乱ベクトル領域で小 角・広角 X 線散乱測定(SWAXS)を行った。温 度は4≤T/°C≤50で変化させ、体積相転移温 度付近で微粒子内部構造の変化を精緻に観 測するため、特に T = 31°C~34°C 付近では 0.5℃ 刻みに温度を変化させた。光学補正と 水の散乱強度を標準試料とした強度補正に よって、絶対強度化された散乱強度 I(q)を得 た。動的光散乱(DLS)測定には ZetasizerNano (Malvern, UK)を用い、レーザー波長 $\lambda = 633$ nm、全散乱角 $\theta = 173^{\circ} (q = 0.0264 \text{ nm}^{-1})$ の測 定条件で行った。粒子濃度は 0.001wt%、及び 溶媒条件は 1mM NaCl に調整した。

SWAXS 測定の結果から、散乱曲線の小角側から、(i)界面の効果(Porod 則: *I*(*q*) ∝ *q*⁻⁴)、(ii) ゲル微粒子内部の固体様の密度揺らぎ、(iii)Ornstein-Zernike(OZ)型の散乱関数で記述

されるゲル網目による密度揺らぎの観測に加えて、広角領域に2つの特徴的な極大の出現を見出した。pNIPAm 水溶液系の SWAXS研究の結果との比較から、これらの干渉ピークは(iv)pNIPAm 側鎖の排除体積によって規定された主鎖間の相関、(v)高分子鎖内部の動径分布関数の効果に帰属できる。

 $T < T_{\rm C}$ ($T_{\rm C}$ は臨界温度)において、OZ 型の寄与は、温度の上昇と共に強度を増大させながら小角側へシフトする。ゲル微粒子内部で、ナノサイズのポリマーリッチ相と水リッチ相へとミクロな分離が進行することを示している。また、小角側の干渉ピーク位置は、温度の上昇に伴い、広角側へシフトする。この現象は、ポリマーリッチ相中での主鎖間距離の減少を示している。OZ 型の寄与は、 $T>T_{\rm C}$ において急激に減少し、Porod 型の散乱($I(q) \propto q^4$)が現れる。これは、高分子鎖がグロビュール状に転移した結果、微粒子内部の電子密度揺らぎが一様な状態へと近づいたことを示す。また、 $T>T_{\rm C}$ では、主鎖間距離は 1nm程度で一定となる。

相関長 ξ と OZ 散乱の前方散乱強度 $I_{OZ}(0)$ の 発散挙動を $\xi = A|T_{\text{C}}-T|^{-\nu}$ 及び $I_{\text{OZ}}(0) = B|T_{\text{C}}-T|^{-\nu}$ 界温度と臨界ベキ指数を決定した。これによ リ、「pNIPAm ハイドロゲル微粒子は臨界挙 動を示さず、ゲル網目サイズは温度上昇に伴 い、粒子サイズに比例して収縮する」と結論 付けた Saunders らの有名な SANS による既往 研究(Langmuier, 20, 3925-3932 (2004))の結果 とは異なり、pNIPAm ハイドロゲル微粒子は 確かに臨界挙動を示すことが明らかになっ た。また、臨界挙動がバルクゲルのそれとは 異なり、3D イジング模型や平均場モデルで 予想される臨界べき指数とは一致しないこ とを見出した。架橋剤濃度依存性などの解析 をさらに進めているが、これらの結果は、ミ クロ空間に制限されたゲルについては、バル クゲルと質的に異なる臨界現象を示す可能 性が強く示唆され、非常に興味深い。一方で、 低架橋剤濃度領域では v/y~0.5 というスケー リングの普遍則を満たしている。これらの結 果を説明するため、現在、フラクタル性、自 己アフィン性、様々な臨界挙動モデルや次元 など理論的側面からの解析を進めている。

さらに、pNIPAm の α 位にメチル基が付加された 構造 を特徴 と有する poly(N-isopropylmethacrylamide) (pNIPMAm) と、pNIPAm を共重合させたゲル微粒子についても検討を行った。pNIPMAm の相転移温度 $T_{\rm C}$ は、pNIPAm のそれより約 $10^{\circ}{\rm C}$ 高く、約 $44^{\circ}{\rm C}$ である。しかし、pNIPAm/pNIPMAm 共重合ゲル微粒子は、2 つではなく、1 つの $T_{\rm C}$ を示した。このことから、ゲルの内部構造は、マクロに見れば均一と言える。しかし、

現時点までの解析では、 $v/\gamma>0.5$ となり普遍則の破れを示唆する結果となった。この点に関しては、さらに慎重な検討が必要であるが、現時点の解釈として、浸透圧縮率に関係する $I_{OZ}(0)$ の発散が抑制されている可能性を考えている。ゲル微粒子内部に微小なpNIPAm リッチドメインが形成され、共重合体ゲルの $T_{\rm C}$ 付近では、これらが既に収縮し、発散挙動に寄与するのは主に pNIPMAm リッチなドメインと考えれば、半定量的には説明が付きそうである。このように、共重合ゲル 微粒子内部の微視的な不均一性が、臨界挙動に影響を与えている可能性が示唆された。

本研究では、 広角領域に拡張した散乱測定から主鎖間のミクロな相関、 溶媒の同位体効果、 分光学的に見た脱水和挙動などの情報を新たに加え、代表的な温度応答性高分子である pNIPAm の臨界挙動に関する理解を進展させたと共に、pNIPAm を架橋した温度応答ゲル微粒子が示すバルクとは異なる臨界挙動を実験的に見出した。現在は、背後にある分子メカニズムを理論的に説明すべく、さらなる検討を鋭意進めている。

例えば、固体物理学分野では、賀川らが 2 次元有機導体のモット 2次元有機導体の臨界 点付近で観測された電気伝導度が、如何なる 空間次元のイジング模型の臨界指数とも一 致しないと結論付けている[Nature 436, 534 (2005)]。本研究の成果を発展・推進させるこ とにより、固体・液体・ゲルに限定しない臨 界現象の普遍性(Universality)とその破れに関 する理解の革新に繋がるものと考えている。

5 . 主な発表論文等

(研究代表者、研究分担者及び連携研究者に は下線)

[学会発表](計 9 件)

柳瀬慶一,<u>鈴木大介</u>, Richard Buchner, 佐藤高彰

"小角散乱法と誘電分光法による感温性高分子水溶液の臨界現象に対する分子論的描像"第 37 回溶液化学シンポジウム・プレシンポジウム, アバンセ, 佐賀県佐賀市, 11/11 (2014).

柳瀬慶一,宮下拓也, Richard BUCHNER, 鈴木大介,佐藤高彰

"コイル-グロビュール転移を示す温度応答性 高分子の臨界挙動と疎水性相互作用の分子論 的メカニズム"

第 18 回高分子ミクロスフェア討論会, 福井大学, 福井県福井市, 11/5~7 (2014).

佐藤高彰、蓮岡和幸、鈴木大介

"Poly(N-isopropylacrylamide)ゲル微粒子の構造

揺らぎと特異な臨界挙動:普遍性とその破れ"第18回高分子ミクロスフェア討論会,福井大学、福井県福井市、11/5~7 (2014).

天野賢史, 呉羽拓真, <u>鈴木大介</u>, <u>佐藤高彰</u> "Poly(*N*-isopropylacrylamide) / Poly(*N*-isopropylmethacrylamide) 共重合体ゲル 微粒子分散系が示す臨界挙動の組成依存性" 第 18 回高分子ミクロスフェア討論会, 福井大学, 福井県福井市, 11/5~7 (2014).

Kenshi AMANO, Takuma KUREHA, <u>Daisuke</u> SUZUKI and Takaaki SATO

"Effects of copolymerization on

thermo-responsive properties of pNIPAm-based microgels studied by small- and wide-angle X-ray Scattering"

International Meeting on Application of Statistical Mechanics of Molecular Liquid on Soft Matter, Kasetsart Univ., Bangkok Thailand, 14-17 Sep 2014

Keiichi YANASE, Takuya MIYASHITA, <u>Daisuke SUZUKI</u>, Richard BUCHNER, and <u>Takaaki SATO</u>

"Temperature-Induced Structural Modifications and Cooperative Dynamics of Aqueous Poly(N-isopropylacrylamide) Solution"

The International Symposium on Fiber Science and Technology (ISF2014), Big Sight Tokyo, Tokyo Japan, 28 Sep-1st Oct 2014

Kenshi AMANO, Takuma KUREHA, Takuya MIYASHITA, <u>Daisuke SUZUKI</u>, and <u>Takaaki</u> SATO

"Static structure of copolymer microgels comprising poly(N-isopropylacrylamide) and poly(N-isopropylmethacrylamide) studied by small and wide-angle X-ray scattering"

The International Symposium on Fiber Science and Technology (ISF2014), Big Sight Tokyo, Tokyo Japan, 28 Sep-1st Oct 2014

Takaaki SATO, Keiichi YANASE, Daisuke SUZUKI, and Richard BUCHNER
"Dielectric and Small Angle Scattering Study on Critical Phenomena of Poly(N-isopropyl acrylamide) in Aqueous Media"
EMLG-JMLG Annual Meeting, University Roma Tre, Roma Italy, 7-12 Sep. 2014

<u>Takaaki SATO</u>, Takuya MIYASHITA, Ayano CHIBA, and <u>Daisuke SUZUKI</u>
"Temperature-dependent Structure of Aqueous Poly(*N*-isopropyl acrylamide): Further Microscopic Insights"

EMLG-JMLG Annual Meeting 2013, University of Lille, Lille France, 9-13 Sep.2013

6. 研究組織

(1) 研究代表者

佐藤 高彰 (SATO, Takaaki) 信州大学・学術研究院繊維学系・准教授 研究者番号: 20373029

(2) 連携研究者

鈴木 大介 (SUZUKI, Daisuke) 信州大学・学術研究院繊維学系・准教授 研究者番号: 90547019

(3) 研究協力者

柳瀬慶一 (YANASE, Keiichi)

信州大学・理工学系研究科・大学院生

研究者番号:なし

天野賢史(AMANO, Kenshi) 信州大学・理工学系研究科・大学院生 研究者番号:なし