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Self-assembling Peptide Reduces Glial Scarring, Attenuates Posttraumatic
Inflammation, and Promotes Neurite Outgrowth of Spinal Motor Neurons

Ando, Kei
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The central nervous system extracellular matrix may play a role in maintenance of
the neuronal network by inhibiting axonal growth and suppressing formation of additional inadequate
synapses. In this study, we show increased expression of nerve growth factor (NGF), brainderived
neurotrophic factor (BDNF), neurotrophin-4 (NT-4), and tropomyosin receptor kinase (TrkA and TrkB) in
SPG-178- promoted neurite outgrowth of motor neurons in vitro, and decreased inflammation and glial scar
with use of SPG-178 in vivo.

This study provides new evidence for the role of SPG-178 as a scaffold in the spinal cord and suggests
that this peptide is a neuroprotective factor that may serve as an alternative treatment for neuronal

injuries.
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