科学研究費助成事業

亚式 28 年 6 日 24 日相

研究成果報告

平成 28 年 6月24日現任
機関番号: 80122
研究種目: 若手研究(B)
研究期間: 2013~2015
課題番号: 2 5 8 7 1 0 8 5
研究課題名(和文)建物の屋根積雪性状の予測・評価手法構築に向けた屋根積雪多層熱収支モデルの高度化
研究課題名(英文)Improvement of Multi-layer Heat Balance Model of Snow on Roofs for the Predicting and Evaluating Roof Snow
研究代表者
阿部 佑平 (Abe, Yuhei)
地方独立行政法人北海道立総合研究機構・建築研究本部北方建築総合研究所・研究員
研究者番号:7 0 6 1 4 1 4 7

交付決定額(研究期間全体):(直接経費) 3,200,000円

研究成果の概要(和文):本研究では、屋根雪の融雪実験を行い、積雪内部における融雪水の発生や移動を明らかにした。また、勾配屋根を有する実建物を対象に屋根雪観測を行い、屋根上積雪深、積雪重量などの基礎データを得た。得られたデータをもとに、積雪内部における水分移動を考慮し、勾配屋根においても屋根積雪性状(積雪深、重量など)を予測することが可能な数値モデルの開発を行い、そのモデルの妥当性を明らかにした。

研究成果の概要(英文): In this study, we conducted snowmelt experiments, and we clarified occurrence and transport of snowmelt water in the snow. Moreover, we conducted a survey of roof snow on an actual building with a pitched roof, and we obtained basic data necessary for developing a numerical model. Considering water transport in the snow, we developed a numerical model that can predict roof snow on a pitched roof, and we clarified the validity of it.

研究分野:工学

キーワード: 屋根雪 数値モデル 水分移動モデル

1.研究開始当初の背景

近年、北海道では空き家、倉庫、廃校となった学校の体育館などで屋根雪荷重による 建物の倒壊被害が相次いでいる。また、建築 物の荷重設計や屋根雪処理計画を行う上で は、時系列で変化する屋根雪の重量や密度を 適正に予測する必要がある。

研究代表者らは、この現象を予測する数値 モデル(屋根積雪多層熱収支モデル)の開発 に取り組んでいるが、屋根雪荷重を予測する 場合、屋根雪内部における融雪水の発生と移 動を把握する必要がある。しかし、これらの 現象については、未だに分からないことが多 くあり、特に勾配屋根では現象が複雑になる ことが考えられる。

2.研究の目的

本研究では、積雪内部における融雪水の発 生や移動を実験により明らかにしモデル化 することで、勾配屋根においても屋根積雪性 状(積雪深、重量など)を予測することが可 能な数値モデルの開発を目的とする。

3.研究の方法

(1)屋根面融雪水の発生とその挙動解明のた めの屋根雪実験

建物を模擬した試験体を作成し、定常状態 における屋根雪の変質過程の観察や屋根面 における融雪水量の測定などを行う。

(2)実建物を対象とした屋根雪観測

勾配屋根を有する実建物において屋根雪 観測を行う。

(3) 屋根積雪多層熱収支モデルの高度化

主に雪崩分野で開発されている積雪内部 の水分移動モデルに係る既往研究を参考に、 融雪水の移動を考慮した数値モデルを作成 し、これまで研究代表者が開発してきた屋根 積雪多層熱収支モデルに組み込むことで、数 値モデルを高度化する。

(4) 屋根積雪多層熱収支モデルの構築

モデル係数などのチューニングを行うこ とで数値モデルの精緻化を行い、モデルを構 築するとともに、開発した数値モデルの実建 物への適用可能性を検証する。

- 4.研究成果
- (1) 屋根面融雪水の発生とその挙動解明のた めの屋根雪実験
 - 勾配を考慮した屋根雪実験

勾配の違いによる融雪水の出水と融雪水 量を比較するため、北方建築総合研究所の外 部環境シミュレータ室において温度一定の 条件で屋根雪の融雪実験を行った(写真1)。 建物の屋根を模擬した1.8m×0.9m×0.45mの 試験体を耐水合板で作成し、試験体の上に雪 (積雪深 20cm、雪重量 103kg、雪密度 307kg/m³)を載せた。実験室温度は札幌にお ける融雪期の気温を想定し3、試験体内部 温度は6 に設定した。試験体勾配を1寸、2 寸、3 寸、4 寸とした場合の融雪水量を電子 はかりで41時間測定した。

図1に実験中における累積融雪水量を示す。 融雪水の出水は1寸勾配で最も遅く、実験開 始から12時間後であった。他の勾配におけ る融雪水の出水は、ほとんど同じであり、実 験開始から約10時間後であった。

図2に1時間当たりの融雪水量を示す。実 験開始から20時間を経過すると、いずれの 勾配でも出水量はほぼ同じになり定常となった。定常状態における1時間あたりの融雪 水の出水は約1.2 kg/hであった。

実験より、勾配が緩いと融雪水の出水時間 は遅くなったが、2 寸勾配以上ではほとんど 変わらないことを明らかにした。また、融雪 水の出水が定常状態になると、1 時間当たり の融雪水量には勾配による違いが見られな かった。

写真1 実験の様子(1寸、3寸勾配)

雪質を考慮した屋根雪実験

雪質の違いによる融雪水の出水と融雪水 量を比較するため、北方建築総合研究所の外 部環境シミュレータ室において温度一定の 条件で屋根雪の融雪実験を行った(写真2)。

表 1 に実験条件を示す。実験では、内寸 300mm×300mm×300mmの断熱材(厚さ100mm、 熱伝導率0.040W/mK)で作成した枠体に試験 体となる雪を入れ、6°傾けた耐水合板の上 に設置し、電子はかりを用いて融雪水量を測 定した。雪質は3種類(氷板2cm+ざらめ 雪28cm、 ざらめ雪15cm+しまり雪15cm、

しまり雪 30cm)とし、雪は屋外から自然積 雪を採取した。試験体の氷板は、試験体の下部に予めしまり雪を敷き詰め、そのしま り雪に氷板 2cm に相当する水を含ませた後、 -10の冷凍庫内で凍らせて作成している。 雪質が違うため各試験体の総重量は異なるが、試験体への伝熱の条件を同じにするため、 試験体の大きさを揃えて実験を行った。また、 試験体内部は加熱せず、実験室温度は札幌に おける融雪期の気温を想定して3、5とし、 実験時間は144時間とした。なお、温度の違いによる融雪水量を測定するため、試験体に 日射は当てずに実験を行った。

図3に各試験体における1時間毎の融雪水 量の変化を示す。雪質毎に融雪状況を見ると、 底面に氷板がある試験体 は、他の試験体に 比べて融雪水の出水時間が最も早く、次いで 試験体 、試験体 の順になった。これは、 氷よりも雪の方が、滞水効果が大きいことが 影響していると考えられる。実験室温度別に 融雪状況を見ると、試験体 と では、実験 室を5 にした方が融雪水の出水時間は早か ったが、一方、試験体 では3 の方が早か った。これは、初期雪温の影響によるもので ある。融雪水の出水が定常となった 84 時間 以降における融雪水量を比較すると、試験体

の実験室3 では0.38 kg/m、5 では0.57 kg/m、試験体 の3 では0.37 kg/m、5 では0.63 kg/m、試験体 の3 では0.43 kg/ m、5 では0.70 kg/mとなった。なお、い ずれの試験体も実験中にすべて融けてなく なることはなかった。

図 4 に積算暖度と融雪水量の関係を示す。 積算暖度とは、温度が 0 以上の値を積算し たものである。積算暖度と融雪水量は 24 時 間毎に算出した値をプロットした。融雪水量 は、試験体 <試験体 <試験体 の順に大 きくなる傾向が見られた。また、融雪水量と 積算暖度の関係から図4の直線の傾きは融雪 係数となる。これより、各試験体の融雪係数 を算出すると、試験体 は3.27 kg/(m² day)、 試験体 は 3.66 kg/(m² day)、試験体 は 4.05 kg/(m² day)となった。融雪係数が大 きくなると融雪速度も大きくなることから、 試験体 <試験体 <試験体の順に融雪 速度が大きくなることを把握し、雪質が融雪 速度に与える影響を定量化した。

実験より、雪質の違いによる融雪水の出水

写真2 実験の様子

表1 実験条件

図3 融雪水量の変化

時間や融雪係数を算出した。底面に氷板があ る場合、融雪水の出水時間は他の試験体より も早いが、融雪係数は他の試験体よりも小さ くなることを明らかにした。

(2)実建物を対象とした屋根雪観測 観測概要

北方建築総合研究所の敷地内にある木造 建物を対象に、屋根雪の断面観測を行った (写真3)。観測対象建物は、屋根勾配が2.5 寸(14°)であり、冬期間は室内を暖房して いない。屋根雪の断面観測は2014年2月24 日に行い、棟から40cm毎に南面および北面 の屋根における屋根上積雪深、積雪重量、積 雪密度、積雪温度を測定した。ただし、南面 の軒先(+240cm)では融雪が進んでいたため 観測できなかった。観測時における平均外気 温は-1.1 、建物内の平均室温は1.4 であ った。地上積雪は2013年11月26日から根 雪になり、屋根雪観測日における地上積雪は 71cmであった。

観測結果

図5に屋根上積雪深、積雪重量を示す。屋 根上積雪深は棟付近(±0cm)で最も小さく、 棟から軒先に向かって積雪深は大きくなっ た。北面では 60cm、南面では 57cm でほぼ-定であったが、南面の軒先付近では融雪によ り積雪深がやや小さかった。なお、降雪時の 卓越風向は西が多く南北軸の吹き溜まりの 影響は小さく、雪止めがあるため屋根雪の滑 動はない。屋根上積雪重量は積雪深と同様に 棟付近(±0cm)で最も小さかった。北面で は棟から離れると積雪重量が大きくなり軒 先付近では小さくなったが、南面では各観測 点における差は小さく、約134kg/m²であった。 各観測点の積雪重量を平均すると 136kg/m² となり、地上積雪重量(181kg/m²)の 0.75 倍であった。

図 6 に屋根上積雪温度の鉛直分布を示す。 北面、南面ともに屋根面付近および積雪表面 では約0、10~40cmでは-4~-3 であった。 また、40cm以上の高さでは、日射の影響によ り北面よりも南面の積雪温度の方が全体的 にやや高い傾向にあった。

図 7 に屋根上積雪密度の鉛直分布を示す。 北面、南面ともに屋根面付近では約 300kg/m³ であったが、積雪表面付近では、北面では 100 ~200kg/m³、南面では 200~300kg/m³であっ た。南面では日射により積雪表面が融雪し含 水率が大きくなったため、積雪密度も大きく なったと考えられる。

(3) 屋根積雪多層熱収支モデルの高度化

図8に数値モデルの概念図を示す。研究代 表者がこれまでに開発した屋根積雪の数値 モデルに、主に雪崩分野で開発されている積 雪内部における融雪水の水分移動モデルを 組み込み、数値モデルを作成した。数値計算 は大きく分けて、1)降雪量等の計算、2)圧 密の計算、3)温度の計算、4)熱収支の計算、 5) 融雪量・再凍結量の計算、6) 水分移動の 計算の6つから構成される。水分移動はダル シー則に基づき計算を行い、飽和透水係数は Shimizu(1970)の式を用い、不飽和透水係 数は van Genuchten モデルを用いて与えた。

雪質を考慮した屋根雪実験の結果を用い て、数値モデルの妥当性を検証したところ、 融雪水量の実験値と計算値は概ね一致する ことを確認した。

(4)屋根積雪多層熱収支モデルの構築

数値モデルの実建物への適用可能性を検 証するため、旭川における実建物を対象に数 値計算を行った。気象データには、気象庁観 測によるデータを用いた。入力条件(降雪量 の計算)をチューニングすることで、屋根上 積雪深などの観測値と計算値は概ね一致す ることを確認した(図9)。これより、本研究 で開発した数値モデルの実建物への適用可 能性を明らかにした。

図8 数値モデルの概念図

図9 屋根上積雪深の比較

5.主な発表論文等

〔学会発表〕(計2件)

<u>阿部佑平</u>,高倉政寛:雪質の違いを考慮し た屋根雪の融雪係数,雪氷研究大会 (2015・松本),2015.9.16,信州大学(長 野県松本市) <u>阿部佑平</u>,堤拓哉:建物の熱的影響と気象 条件による雪質の変化を考慮した屋根積 雪多層熱収支モデルの開発 その6勾配屋 根を有する実建物の屋根雪観測,雪氷研究 大会(2014・八戸),2014.9.21,八戸工業 大学(青森県八戸市)

〔その他〕 http://www.hro.or.jp/list/building/rese arch/nrb/index.html

6.研究組織

(1)研究代表者 阿部 佑平(ABE, YUHEI) 地方独立行政法人北海道立総合研究機

構・建築研究本部北方建築総合研究所・研 究職員 研究者番号:70614147

- (2)研究分担者 なし
- (3)連携研究者 なし