科学研究費助成事業

平成 27 年 6 月 12 日現在

研究成果報告書

機関番号: 24403 研究種目:研究活動スタート支援 研究期間: 2013~2014 課題番号: 25887043 研究課題名(和文)カゴメ金属における新規物質探索と機能性発現

研究課題名(英文)Search for new materials and properties in kagome metals

研究代表者

石井 悠衣 (Ishii, Yui)

大阪府立大学・工学(系)研究科(研究院)・助教

研究者番号:50708013

交付決定額(研究期間全体):(直接経費) 2,100,000円

研究成果の概要(和文): カゴメ格子上の電子系は、分散をもたない平坦バンド構造を持つことが知られている。本 研究では、カゴメ格子を持つ新物質探索と機能性発現を目的とし、YCr6Ge6の超伝導化を試みた。 様々な元素置換を行ったYCr6Ge6多結晶および単結晶を作製し、物性評価と透過型電子顕微鏡観察を行った。超伝導 の発現は見られていないが、YCr6Ge6単結晶においてc' = c/2の長周期構造が局所的に形成されていることが明らかに なった。また高分解能電子顕微鏡観察の結果、この長周期構造の他に10数nm間隔という高密度で反位相ドメインが形成 されていることがわかった。この長周期構造を利用した超伝導化を現在進めている。

研究成果の概要(英文): Polycrystalline samples and single crystals of YCr6Ge6 substituted by various elements were prepared, and their crystals structure and physical properties were characterized as well as microstructure observation by means of the transmission electron microscope (TEM). High resolution TEM observation reveals that the anti-phase domains exist in several nm intervals. The TEM observation, the electron diffraction experiments and STEM-EDS analyses indicate that the superstructure with c' = c/2 is locally formed in the YCr6Ge6 single crystals.

研究分野: 固体化学

キーワード: 新物質探索 超伝導 カゴメ格子

1. 研究開始当初の背景

三角格子やパイロクロア格子、カゴメ格子 のように正三角形の基本構造を格子に持つ 物質は、フラストレート化合物と呼ばれる。 これらの格子上に、反強磁性的相互作用を持 つ局在スピンが存在すると、全ての原子上の スピンの向きが一意に決まらないという幾 何学的フラストレーションが生じる。同様の フラストレーション効果は、結晶格子を形成 する原子の平均価数が非整数となる混合原 子価状態においても生じる。最近、系が金属 の場合には、このスピンのフラストレーショ ンが伝導電子に影響を与え、電子の有効質量 (m*)が通常金属の約 40 倍に増大する、とい う特異な現象が LiV₂O₄ というスピネル化合 物において見出されている。

本研究では、超伝導を始めとする「カゴメ 金属」状態等の新奇物性の発現を目的とし、 スピンや電荷のフラストレーション効果が 期待されるカゴメ格子等の結晶格子を有す る新しいフラストレート化合物の探索を行 ってきた。現在までに、Cr がカゴメ格子を形 成する YCr₆Ge₆ 金属間化合物について第一 原理計算と単結晶育成を行った結果、カゴメ 格子上の電子系に特有の「平坦バンド」とい う特殊な電子構造が、フェルミエネルギー近 傍に現れていること、またこの平坦バンドの 影響を受けて、電子の有効質量がバンド計算 値の2倍に増強されていることを明らかにし てきた。本結果は、これまで理論中心だった 平坦バンド研究に対する初めての物質科学 的アプローチであり、今後の平坦バンド研究 の足がかりとなるものと考えている。

2. 研究の目的

カゴメ格子上の電子系は、分散をもたない 平坦バンド構造を持つことが知られている。 しかしながら、この平坦バンドにフェルミエ ネルギーが一致する化合物の合成例はこれ まで報告されていなかった。一方で、平坦バ ンドにフェルミエネルギーが一致すると、平 坦バンド強磁性、分数量子ホール効果、重い 電子状態、エキゾチック超伝導といった新規 物性の発現が理論的に予想されている。そこ で本研究では、平坦バンドがフェルミエネル ギー近傍に存在する可能性が指摘された YCr₆Ge₆カゴメ金属の超伝導化を目的とした。

図 1. YCr₆Ge₆の結晶構造。(空間群 P6/mmm)

3. 研究の方法

YCr₆Ge₆単結晶および多結晶を、In または Sn フラックス法、およびアーク溶解法を用い てそれぞれ作製した。

まず、単結晶については、Y, Cr, Ge, In, Sn 等の粉末および chip を様々な仕込組成で秤 量しアルミナタンマン管に入れた。これを石 英管に真空封入し、単結晶育成温度パターン を様々に検討して単結晶育成を行った。Sn ま たは In フラックスを濃塩酸により除去し、単 結晶を取り出した。

また YCr₆Ge_{6-x}In_x (x = 0.2, 0.4, 0.6)多結晶試 料は、Y, Cr, Ge, In 粉末および chip を化学量 論比で秤量し、アーク溶解後、700, 800, 900, 1000℃でそれぞれ 400 時間熱処理を行うこと で作製した。

得られた試料について、粉末 X 線回折およ び単結晶 X 線回折による結晶相の同定、高分 解能透過型電子顕微鏡による微細構造観察 を行った。また 2 ~ 300 K の温度範囲で直流 四端子法による電気抵抗率測定を、SQUID 磁 束計による磁化測定を行った。

4. 研究成果

(1) YCr₆Ge_{6-x}In_x多結晶

図 2 は 700°C で作製した YCr₆Ge_{6-x}In_x他結 晶体の粉末 XRD パターンを示す。x = 0.2, 0.4,0.6 の組成でほぼ単相の試料が得られている ことがわかる。これらの試料の格子定数の x 依存性を図 3 に示す。In 仕込量の増加に伴い 格子定数 a が系統的に増加していることから、 In が Ge サイトを置換していることが示唆さ

図 2. 700°C で作製した YCa₆Ge_{6-x}In_x の粉末 XRD パターン。

図 3. 700°C で作製した YCa₆Ge_{6-x}In_xの格子定 数 *a* の *x* 依存性。

図4(a) 得られた試料の外観。(b) YCr₆Ge₆ウ ィスカー結晶の電子回折パターン([010]入 射)。(c) 別の視野における電子回折パターン ([010]入射)。

図 5 (a) YCr₆Ge₆単結晶の電子顕微鏡像 ([010] 入射)。c 軸に垂直方向に多数の欠陥の存在が わかる。(b) 高分解能電子顕微鏡像([010]入 射)。単位胞数個分の間隔で高密度に反位相境 界が見られている。(c) HAADF STEM 像 ([120]入射)。

図 6 HAADF-STEM 像と、対応する領域の STEM-EDS 組成分析結果。

れる。これらの試料について、磁化測定、電 気抵抗率測定を行ったところ、超伝導は観測 されなかった。

(2) YCr₆Ge₆ 単結晶

得られた結晶の外観を図 4(a)に示す。単結 晶 X 線回折の結果、これらの結晶が格子定数 a = 5.165 Å, c = 8.297 Å をもつ YCr₆Ge₆ 単結 晶であることを確認した。これらの試料の [010]入射による電子回折パターンを調べる と、図 4(b)のように明瞭な回折斑点が観察さ れたが、別の視野で観察すると、図 4(c)に示 したように 1 が奇数の 001 回折スポット強度 が弱くなっていることがわかった。このこと は、格子定数 c が部分的に半分になっている 領域があることを意味している。また、これ に加え図 4(c)では、[001]*に垂直方向にスト リークを生じており、これは c 軸に沿った面 欠陥の存在を意味する。

そこでこれらの試料について透過型電子 顕微鏡観察を行うと、図 5(a)に示したように、 c 軸に沿って多数の欠陥が生じていることが わかった。図 5(b)に示した高分解能電子顕微 鏡像によると、それらが単位胞数~10 数個分 の間隔で高密度に存在していることがわか る。さらに[120]入射による HAADF-STEM 観 察を行った結果、各原子に対応する輝点が反 位相でずれていることがわかり、この欠陥が 反位相境界であることが明らかとなった。

また図 6 は、YCr₆Ge₆結晶の HAADF-STEM 像と、STEM-EDS マッピングを行った結果で ある。Y 組成分析結果を見ると Y 層が等間隔 で並んでいる様子がわかるが、図の左側と右 側では Y 層の周期が異なり、図の右側では Y が半分の周期で並んでいるように見える。つ まり、図 4(c)で見られた電子回折パターンの 結果を合わせて考えると、格子定数 c が半分 になっている領域が局所的に存在している 可能性がある。

図7は、YCr₆Ge₆の結晶構造とYCo₆Ge₆の 結晶構造を比較したものである。これらは同 じ空間群タイプに属するが、単位胞のc軸方 向の長さが異なる。YCo₆Ge₆ではYとGelサ イトの占有率がそれぞれ0.5となることで、c軸の長さを半分にしている。すなわち(b)の構 造は、(a)の構造においてYサイトとGe3サ イトが disorder することに対応する。YCr₆Ge₆ ではこれまで(b)のような disorder 相は知られ ていないが、本研究の上述の結果は、反位相 ドメインの界面密度が高い部分では局所的 にc軸が半分になった領域が形成されている

可能性を示唆している。今後、結晶全体にわたってこのような disorder 構造を有する試料の作製と物性の評価が期待される。

(研究代表者、研究分担者及び連携研究者に は下線)

〔雑誌論文〕(計 4件)

(全て査読あり)

- 1. "Structural changes and microstructures of $Ba_{1-x}Sr_xAl_2O_4$ for $0 \le x \le 0.4$ ", Eri Tanaka, <u>Yui Ishii</u>, Hirofumi Tsukazaki, Minoru Osada, Hiroki Taniguchi and Shigeo Mori, Journal of the Korea Physical Society (in press).
- "Structural changes and micrstructures in stuffed tridymite-type compounds Ba₁ _ _xSr_xAl₂O₄", Eri Tanaka, <u>Yui Ishii</u>, Hirofumi Tsukazaki, Hiroki Taniguchi and Shigeo Mori, Japanese Journal of Applied Physics, 53 (2014) 09PB01/1-4.
- "Strucutral Phase transition and microstructures in stuffed tridymite-type compounds, Ba(Al, Fe)₂ O₄", Shigeo Mori, Tomoatsu Ozaki, Eri Tanaka, <u>Yui Ishii</u>, Kousuke Kurushima, Yoshichika Kubota and Hiroki Taniguchi, Ferroelectrics, 464 (2014) 116-121.
- "Ferroelectric and structural antiphase domains and domain wall structures in Y(Mn, Ti)O₃", Shigeo Mori, Kousuke Kurushima, Hiroki Kamo, <u>Yui Ishii</u>, FeiTing Huang, Youichi Horibe, Takuro Kastufuji, S-W. Cheong, 462 (2014) 50-54.

〔学会発表〕(計11件)

- 「放射光X線回折によるBaA1204の構造相 転移の研究」,中平夕貴、竹田翔一、森吉 千佳子、黒岩芳弘、<u>石井悠衣</u>、森茂生,日 本物理学会 2015 年春季大会,早稲田大 学
- 「透過型電子顕微鏡による充填トリジマ イト型酸化物 Ba1-xSrxA1204(x>0.7)にお ける微細構造観察」,塚崎裕文,田中慧里, <u>石井悠衣</u>,長田実,谷口博基,森茂生,日 本物理学会 2015 年春季大会,早稲田大 学
- 「充填トリジマイト型酸化物 (Ba, Sr)A1204の熱膨張特性」,田中慧里、 <u>石井悠衣</u>、塚崎裕文、北橋文成、井山彩 人、久保田佳基、谷口博基、森吉千佳子、 黒岩芳弘、森茂生、日本物理学会 2015 年春季大会,早稲田大学

4. 「ローレンツ TEM 法による

BaFe12-x-0.05ScxMg0.05019(x=1.6,1.75)の磁気ドメイン観察」,中島宏、小谷厚 博、井山彩人、<u>石井悠衣</u>、原田研、森茂 生、日本物理学会 2015 年春季大会,早 稲田大学

- 5. 「マンガン酸化物における磁気的ストラ イプ構造とその磁場応答」,小谷厚博、 中島宏、井山彩人、<u>石井悠衣</u>、原田研、 森茂生、日本物理学会 2015 年春季大会, 早稲田大学
- 「間接型強誘電体(Ba, Sr)A1204 の強誘電 相転移の特徴」,田中慧里、<u>石井悠衣</u>、塚 崎裕文、森茂生、久保田佳基、河口彰吾、 長田実、谷口博基,日本セラミックス協 会 2015 年年会,岡山大学
- 「透過型電子顕微鏡による充填トリジマ イト型酸化物 Ba1-xSrxA1204(x>0.7)にお ける微細構造観察」,塚崎裕文、田中慧里、 <u>石井悠衣</u>、長田実、谷口博基、森茂生、 日本セラミックス協会 2015 年年会,岡 山大学
- 「充填トリジマイト型酸化物 Ba1-xSrxGa204の構造変化と微細構造」, <u>石井悠衣</u>,田中慧里,北橋史成,塚崎裕 文,森茂生,日本物理学会 2014 秋季大 会,中部大学
- 「充填トリジマイト型酸化物 (Ba, Sr)A1204の構造揺らぎと強誘電相転移」,田中慧里、<u>石井悠衣</u>、北橋文成、塚 崎裕文、森茂生、日本物理学会 2014秋 季大会,中部大学
- 「充填トリジマイト型酸化物 Ba1-xSrxA1204 での構造相転移」,塚崎裕 文、田中慧里、<u>石井悠衣</u>、長田実、谷口 博基、森茂生、日本物理学会 2014 秋季 大会,中部大学
- 11. 「元素置換した充填トリジマイト型強誘 電体 BaA1204 における構造揺らぎと誘電 特性」,田中慧里、尾崎友厚、<u>石井悠衣</u>、 久保田佳基、谷口博基、森茂生、2014 年 物理学会春季大会(東海大学)

〔図書〕(計 0件)

〔産業財産権〕 〇出願状況(計 0件)

○取得状況(計 0件)

〔その他〕 ホームページ等 http://mori-lab.mtr.osakafu-u.ac.jp

6. 研究組織

(1)研究代表者
石井 悠衣 (Yui Ishii)
(大阪府立大学・工学研究科・助教)
研究者番号: 50708013

^{5.} 主な発表論文等

(2)研究分担者 なし

(3)連携研究者 なし