科学研究費助成事業(基盤研究(S))研究進捗評価

課題番号	26220607	研究期間	平成 2 6 (2014)年度 ~平成 3 0 (2018)年度
研究課題名	極低温静電型イオン蓄積リングが 拓く極限科学:宇宙化学から放射 線生物学までの展開	研究代表者 (所属・職) (平成31年3月現在)	東 俊行(理化学研究所・開拓研 究本部・主任研究員)

【平成29(2017)年度 研究進捗評価結果】

評価		評価基準	
	A+	当初目標を超える研究の進展があり、期待以上の成果が見込まれる	
	A	当初目標に向けて順調に研究が進展しており、期待どおりの成果が見込まれる	
0	A-	当初目標に向けて概ね順調に研究が進展しており、一定の成果が見込まれるが、一部	
		に遅れ等が認められるため、今後努力が必要である	
	В	当初目標に対して研究が遅れており、今後一層の努力が必要である	
	С	当初目標より研究が遅れ、研究成果が見込まれないため、研究経費の減額又は研究の	
		中止が適当である	

(意見等)

本研究の当初の目標は、極低温静電型イオン蓄積リング(RICE)装置に冷却イオン生成装置を導入し、さらにレーザー光や中性イオンビームの合流衝突を高分解能で実現することである。実現に向け計画は進展しているが、一部遅れが認められる。研究期間は残り1年半であるが、中性粒子合流装置や高精度検出装置を完成させ、宇宙における化学進化、大型分子イオンの分光・反応、大型クラスターイオンの研究が開始されることに期待したい。

RICE を使った中性粒子合流装置完成後は、その成果発表に努め、他分野(宇宙、化学、放射線生物学)に関連した多くの学術成果実験が開始できるよう、広報活動にも努力することを期待する。

【令和元(2019)年度 検証結果】

検証結果	当初目標に対し、概ね期待どおりの成果があったが、一部十分ではなかった。	
	本研究において、分子イオンビーム生成入射装置、レーザー分光装置、中性粒子合流	
A-	装置など目標装置の主要部は概ね完成したと認められ、本手法でしかなしえない測定デ	
	ータが得られている。	
	しかし、中性フラグメントの検出部等は完成までわずかに達しておらず、これに伴い	
当初計画にある広範な分野への研究展開は不十分で、期待された成果には届いていない。		
	開発した装置は無二の計測を可能にするものであるので、本来の目的である広範な研	
	究分野への応用が今後進められることを期待する。	