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Narutaka Ozawa has conducted research on discrete groups under the slogan "
Functional analytic group theory." He studied (in collaboration with E. Breuillard, M. Kalantar, and
M. Kennedy) the characterization of the simplicity for the reduced group C*-algebra and obtained a
breakthrough result. Next, he turned to the harmonic analysis on discrete groups and found a quite
simple proof to the famous Gromov theorem stating that a grouE of polynomial growth is virtually
nilpotent. Combining the new method with random walk theory, he (in collaboration with A. Erschler)
generalized the Gromov theorem.
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