交付決定額(研究期間全体):(直接経費)

科学研究費助成事業

研究成果報告書

	平成	29	年	5	月	22	日現在
機関番号: 11301							
研究種目: 基盤研究(C)(一般)							
研究期間: 2014~2016							
課題番号: 2 6 4 0 0 3 4 7							
研究課題名(和文)スピングラス量子臨界物質の探索とその量子臨界現象の得	研究						
研究課題名(英文)Investigation of spin glass quantum critical materi phenomena	ial and	d its	; qua	ntum	cri	tical	
研究代表者							
李 徳新(Li, Dexin)							
東北大学・金属材料研究所・助教							
研究者番号:4 0 2 8 1 9 8 5							

3,700,000円

研究成果の概要(和文):本研究では多数のUおよび希土類化合物におけるスピングラス(SG)現象の外場制御効 果を観測した。特に、元素組成及び外部磁場の制御効果を調べるために、SG物質であるU2Pd1+xSi3-x系多結晶及 びCe2CuSi3単結晶を合成し、1.8Kまでの物性測定を行った。その結果、Si含有量の増加と共にU2Pd1+xSi3-xのSG 転移温度は降下することを明らかにした。量子臨界状態を達成する可能性が高い元素組成を見つけた。まだ、 Ce2CuSi3の低温SG特性は磁場により変化することを確認した。特に、SG転移温度は磁場の増加と共に低温側に移 動し、1.4kOe付近で量子臨界状態を実現する可能性が考えられる。

研究成果の概要(英文): Evident effects of element composition and external magnetic field on the spin glass behavior are observed for many ternary uranium and rare earth compounds. In particular, spin glass system U2Pd1+xSi3-x polycrystals and Ce2CuSi3 single crystal are synthesized and their basic physical properties are measured down to 1.8 K. As a result, the spin glass transition temperature of U2Pd1+xSi3-x decreases as the Si content increases. The optimum Si content that is highly likely to achieve a quantum critical state for U2Pd1+xSi3-x is found. On the other hand, it is confirmed that the spin glass characteristics of Ce2CuSi3 moves toward the low temperature side as the external magnetic field increases, and there is a large possibility to achieve a quantum critical state near 1.4 kOe.

研究分野: 固体物理

キーワード : スピングラス 量子臨界状態 フラストレーション効果 f電子系化合物

1. 研究開始当初の背景

近年、近藤効果と RKKY 相互作用の競合 に起因する強磁性や反強磁性の量子臨界物 質が次々と発見され、量子臨界点近傍におけ る電子状態の特異な挙動は盛んに研究され ている。特に強相関電子系においては、フラ ストレーションは重い電子系の量子臨界現 象をチューニングするもう一つのパラメー ターとして注目されている。本質的な量子臨 界現象を理解するために、そのメカニズムの 究明は必要不可欠である。

f 電子系スピングラス物質は、近藤効果 や RKKY 相互作用に加え顕著なフラストレー ション効果を持ち、フラストレーションによ る量子臨界現象を研究する上で最良の物質 群と言える。しかし、スピングラス挙動に関 する極低温までの研究例が少なく、第三種磁 気秩序と呼ばれるスピングラスの量子臨界 物質は今まで発見されていない。

我々はこれまで、f 電子系 NMAD (nomagnetic atom disorder) 化合物のスピ ンフラストレーション効果、特に外場(磁場 や圧力、元素組成)によるスピングラス状 態の制御について研究を行ってきた。2:1:3 系など一連のウランおよび希土類化合物の 結晶育成に成功し、スピングラス、近藤効果、 長距離磁気秩序、長距離磁気秩序とスピング ラス共存などの現象を見出し、それらの磁性 が外場に敏感であることを明らかにした。 NMAD スピングラスは伝統的なスピングラス と異なり、規則的な結晶格子を形成している 磁性原子の間に、なぜスピングラス状態が形 成するのか、フラストレーションや近藤効果 と RKKY 相互作用との競合によりスピングラ ス量子臨界状態が誘起できるのか、物性物理 学上大変興味深い。

f 電子系化合物の物性研究は国内外で第 一線の研究者らに支えられ、長い伝統がある。 しかし、NMAD 構造に起因するスピングラス現 象に関する研究は極めて少ない。特に、磁気 量子臨界点近傍のスピングラス挙動につい て研究はまだない。多くの強磁性や反強磁性 の U/Ce 化合物が量子臨界点近傍において新 奇な量子臨界現象を示すことを考えれば、外 場によってスピングラス物質が量子臨界 状態を示すことは想像に難くない。この アイデアは、ウランおよび希十類 2:1:3 系 物質の最新の研究結果(外場制御によるスピ ンクラスターの生成・成長、スピングラ ス現象の誘起・消失など徴候を示す)に 裏付けられており、これらの化合物はス ピングラス量子臨界物質の有力な候補で あると考えられる。

2. 研究の目的

NMAD 構造を持つウランあるいは希土類 化合物は、フラストレーションや近藤効果と RKKY 相互作用との競合によって特異な磁性 が観測される。外場により、その競合効果の 制御は容易であり、長距離磁気秩序やスピン グラス、量子臨界点など電子状態を連続的に 変えていくことが可能である。本研究は、 NMAD 構造を持つウランおよび希土類三元 化合物を主なターゲットにして、新規物質 を開発すると共に、(1)スピングラス現象 の誘起・消失の外場制御を実現する。(2) 低温物性の観測によりスピングラス量子 臨界物質を探索し、新奇な臨界磁性の発見 と機構解明を目指す。

3. 研究の方法

ウランは放射性物質であるため、試料の調 製や測定準備など取り扱い作業の安全性を十 分配慮しながら、次のような四つの過程を通じ て研究を行った。

 (1)物質探索と結晶育成 テトラアー ク炉及び高温電気炉を用いて、引き上げ法と フラックス法で試料を作製する。ターゲット物 質は以下の通りである。① 2:1:3 系物質 R₂TX₃ (R=ウラン及び希土類元素、T=遷移金属、 X=Si、Ge、In)及びその派生する物質、②

2:3:5 系物質 U₂T₃X₅(T=遷移金属、X=Si、Ge、 Sn)、③ 1:1:1 系物質 URh_{1-x}Ir_xGe。

(2) 試料の品質評価 まず、粉末X線回 折と電気抵抗測定によって育成された試料 の品質を評価し、結晶構造および格子定数 を決定する。X線ラウエカメラを利用して結 晶軸を決定し、放電加工機により試料を整形す る。また、構造および結晶品質の評価として、 TEM・SEM 観察および化学分析を行う。

(3)物性測定 電気抵抗、磁気緩和、 比熱、acとdc带磁率、磁気メモリ効果な ど基礎物性の測定は基本的に金研大洗セン ター、金研低温センターおよび金研α放射体 実験室に設置されたSQUID、PPMSおよび磁場中 低温伝導特性測定装置を利用する。なお、 高磁場磁化の測定は物性研の国際超強磁場 科学研究施設で行う。

(4) データ解析・物性考察 データ解析 は主に電気抵抗、比熱、磁化率の温度、磁 場、圧力依存性から、各物理条件下の電子 状態を調べる。現存の理論を用いて、実験 結果を定性的あるいは定量的に分析する。 特に、外場制御によるターゲット試料はス ピングラス磁気秩序から非磁性状態までの 変化過程を究明するために、各物理状態を 特徴づけるパラメーターを決める。外場の 制御効果を明らかにする。

4. 研究成果

本研究では、新規スピングラス物質を 探索すると共に、2:1:3、1:1:1、2:3:5系 化合物を主なターゲットに選択し、新規 物質を含む多数の多結晶或は単結晶試料 を育成した。それらのスピンフラストレー ション効果に関連する基礎物性の測定を行 った。以下で、多結晶 U₂Pd_{1+x}Si_{3-x} 系物質及び 単結晶 Ce₂CuSi₃の実験データを中心にして、 本研究で得られた主な成果について述べる。

(1) $U_2Pd_{1+x}Si_{3-x}$ 系

六方晶構造を持つ 2:1:3 ウラン化合物 U₂PdSi₃は典型的な NMAD スピングラス物質で ある。本研究では、Pd と Si の仕込み量を 変えて、U₂Pd_{1+x}Si_{3-x}系の化合物(x=0,±0.1, ±0.2, ±0.3, ±0.4, ±0.5) を合成し、低 温磁化、磁化率、磁気緩和、磁気メモリ効果 など基礎物性を測定した。 例として、図1 に磁場中冷却 (FC) 後およびゼロ磁場中冷却 (ZFC) 後 $U_2Pd_{1+x}Si_{3-x}$ (x=-0.1, 0, 0.2) の dc 磁化率の測定結果を示す。以下のスピング ラスの特徴を観測された。①低い外部磁場を 印加すると、シャープな磁化率ピークを示し ており、何らかの磁気転移を示唆する。②帯 磁率のピークは外部磁場に敏感に変化する。 磁場増加と共にこのピークはプロードにな り、ピークの位置は低温側に移動し、ピーク の大きさは小さくなる。③特徴温度 T_f (ス ピングラス転移温度)が存在する。T<Tfの低 温側で FC と ZFC 磁化率曲線が分離し、明ら かな不可逆磁性が現れる。④外部磁場が大き

図1、U₂Pd_{1+x}Si_{3-x}のFC(open symbols)及び ZFC(closed symbols)磁化率の温度および磁 場依存性。(a):x=0.2、(b):x=0、(c):x=-0.1。

図 2、(a) 組成パラメーター x の増大と伴い $U_2Pd_{1+x}Si_{3-x}$ におけるスピングラス相転移温度は 絶対零度に近づく。(b) 外部磁場 H の増大と伴い $U_2Pd_{1+x}Si_{3-x}$ (x=0)におけるスピングラス相転 移温度は絶対零度に近づく。

くなると、T_fは低温側に移動する。その他、 長時間磁気緩和現象およびスピングラス特 有な ZFC 磁気メモリ効果などが観測された。

図1に示すように、スピングラス転移温 度 T_f は元素の仕込み量により規則的に変化 する。組成パラメーターx は 0.3 から-0.3 ま で変化すると、T_f は 20.7 K から 3.3 K まで 降下する。x=-0.4 ではスピングラス転移は 1.8 K まで観測されておらず、その近傍で T_f は絶対零度まで降下する可能性が高い 「図 2(a)」。まだ、スピングラス転移温度の外部 磁場の制御効果は顕著であり、U₂PdSi₃ (x=0) の場合は 7 T 程度の磁場をかけると T_f は絶対 零度に近づくことを期待できる「図 2(b)」。

(2) U₂CuSi₃

Ce₂CuSi₃ は六方晶 A1B₂ 構造を持つ NMAD 物質である。これまでの比熱、磁化、ac と dc 磁化率、磁気緩和の測定結果により、 T_f~2.1 K 付近で c 面内および c 軸方向におい てスピングラス転移が発生し、典型的なスピ ングラス効果が既に観測された。本研究では、 Ce₂CuSi₃ 単結晶試料を利用して、外部磁場

(H_{dc})中 ac 磁化率の温度および周波数依存 性の変化を測定した。例として、H_{dc}=20、50、 140 0e の外部磁場中 Ce₂CuSi₃ における c 面内 の交流磁化率(実部)の測定結果を図3に示 す。スピングラスの典型的な特徴が観測され た。ここでは、周波数a=0.1 Hz の $\chi'_{ac}(T)$ の ピーク温度 T_f はスピングラス転移温度と定 義する。外部磁場をかけると、T_f は H_{dc}=0 の 2.06 K から H_{dc}=230 0e の 1.81 K まで移動し、 明らかな磁場依存性が観測された。T_f(H)曲線

図 3、H_{dc}=20 0e (a)、50 0e (b)、140 0e (c) の外部磁場中単結晶 Ce₂CuSi₃における *c* 面内 交流磁化率実部の温度及び周波数依存性。

を0Kまで外挿すると、1.4 k0e 付近でT_f(H) は絶対零度に近い、量子臨界状態を達成する ことが期待できる「図4(a)」。一方、ac 磁化 率の解析結果により、スピングラス状態を評 価する動力学パラメーターは外部磁場の増 加により規則的に変化する。図4(b)に示すよ うに、スピングラス転移温度の周波数変化率 $\delta T_f [=\Delta T_f/(T \Delta 1 og \omega)]$ は磁場の増加と伴う大 きくなり、スピンクラスターの形成・成長な どスピングラス状態を変遷する可能性が考 えられる。これらの興味深い物性を究明する ために、極低温までの物性測定、特に、Hae=1.4 k0e 付近で比熱および電気抵抗の測定により 比熱係数γと抵抗係数 A を決定することが必 要である。

(3)新規スピングラス/クラスターグラス 物質の探索

① Pr₂CuIn₃は六方晶 CaIn₂型構造を持つ NMAD 化合物であり、これまで常磁性(4.2K まで)物質と認識している。本研究でよく熱 処理した多結晶試料を用いて、詳細な基礎物 性を測定した。その結果、T_f~5.4 K 以下で不 可逆磁性、長時間磁気緩和、交流磁化率の周 波数依存性などスピングラス効果が観測さ れ、Pr₂CuIn₃ は典型的なスピングラス物質で あることが確認した。

② Er₂PtSi₃ と Ho₂PtSi₃ の多結晶試料を

図 4、(a) 外部磁場 H_{dc} の増大と伴い単結晶 Ce₂CuSi₃における c 面内スピングラス相転 移温度は絶対零度に近づく。(b)単結晶 Ce₂CuSi₃における c 面内スピングラス相転 移温度の周波数変化率 δT_{f} の磁場依存性。

作成し、Ba₂LiSi₃型の斜方晶構造を持つ単相 物質であることを明らかにした。基礎物性の 測定結果により、Er₂PtSi₃と Ho₂PtSi₃はそれ ぞれリエントラントスピングラスと強磁性 クラスターグラス物質であり、両方共に低温 側で巨大な磁気熱量効果が発見された。

③ 多種類の2:3:5系U₂T₃X₅(T=遷移金属、 X=Si, Ge, Sn) 化合物の育成を試みた。その 結果、U₂Ir₃Si₅単結晶及び U₂Rh₃Ge₅多結晶試料 育成に成功した。スピングラス物質ではない が、新規物質として両方とも斜方晶 U₂Co₃Si₅ 型結晶構造を持ち、興味深い物性を示した。 U₂Ir₃Si₅は強い磁気異方性を持つ反強磁性体 (T_N=35.5 K)であり、T₀=25.3 K で新たな一次 磁気転移発生した。容易軸である[010]軸で は 20 T 付近で明確な 3 段のメタ磁性転移が 観測され、To以下では一次転移的なメタ磁性 転移が見られた。U2Rh3Ge5はTN=47Kの反強磁 性体であり、4.2 K で 11.5 T から明確な多段 のメタ磁性転移が現れ、複雑な磁気相図の存 在が予想できる。一方、U2Ru3Ge5 は明らかな スピングラス振舞いが現れ、T_f~4.5 K 付近で スピングラス転移が確認された。しかし、こ の物質の結晶構造は今まで発見された 2:3:5 系物質の数種類の結晶構造と異なり、詳細な 構造解析が必要である。

 ④ 擬三元系 1:1:1 化合物 URh_{1-x}Ir_xGe (0≤x≤1)の多結晶あるいは単結晶を作成した。
 全ての試料は TiNiSi 型の斜方晶構造を持ち、
 x 値は1から減少すると共に、URh_{1-x}Ir_xGe の磁性は反強磁性から強磁性まで変化する。
 x<0.7 の URh_{1-x}Ir_xGe 試料はスピングラスのような磁気フラストレーション現象が現れ、交 流磁化率の周波数依存性、熱不可逆磁性など 典型的な特徴が観測された。x~0.43 近傍の URh_{1-x}Ir_xGe 試料のフラストレーション現象は もっとも顕著である。それはキュウリ温度近 傍で強いスピン揺らぎに起因するものであ ると考えられる。

5. 主な発表論文等

(研究代表者、研究分担者及び連携研究者に は下線)

〔雑誌論文〕(計12件)

(1) <u>D. X. Li, Y. Homma</u>, A. Nakamura, <u>F. Honda</u>, <u>T. Yamamura</u>, <u>D. Aoki</u>, Re-entrant spin glass behavior and large magnetocaloric effect in Er₂PtSi₃, Journal of Physics: Conference Series, 査読有, 807 (2017) 042003 1-8. doi:10.1088/1742-6596/807/4/042003

(2) A. Nakamura, <u>F. Honda, Y. Homma, D. X.</u> <u>Li</u>, K. Nishimura, M. Kakihana, M. Hedo, T. Nakama, Y. Ōnuki, and <u>D. Aoki</u>, Single crystal growth and superconductivity in La_7Ni_3 without inversion symmetry in the crystal structure, Journal of Physics: Conference Series, 査読有, 807 (2017) 052012 1-5. doi:10.1088/1742-6596/807/5/ 052012

(3) <u>F. Honda, D. X. Li</u>, K. Okauchi, <u>Y. Homma</u>,
A. Nakamura and <u>D. Aoki</u>, Investigation of exotic electronic properties on rare-earth & actinide compounds under high pressure,
MSR Advances, 査読有, 1 (2016) 2975-2986.
DOI: https://doi.org/10.1557/adv.2016.373

(4) <u>F. Honda</u>, K. Okauchi, A. Nakamura, <u>D.</u> <u>X. Li</u>, <u>D. Aoki</u>, H. Akamine, Y. Ashitomi, M. Hedo, T. Nakama, and Y. Onuki, Pressureinduced valence transition and characteristic electronic states in EuRh₂Si₂, Journal of the Physical Society of Japan, 査読有, 85 (2016) 063701 1-4. http://doi.org/10.7566/JPSJ.85.063701

(5) Y. Hirose, H. Doto, <u>F. Honda</u>, <u>D. X. Li</u>, <u>D. Aoki</u>, Y. Haga and R. Settai, New heavyfermion antiferromagnet UPd₂Cd₂₀, J. Phys.: Condens. Matter, 査読有, 28 (2016) 425601 1-6. doi:10.1088/0953-8984/28/42/425601

(6) <u>D. Aoki</u>, A. Nakamura, <u>F. Honda</u>, <u>D. X.</u> <u>Li</u>, and <u>Y. Homma</u>, Large upper critical field of superconductivity in the single crystal U₆Co, Journal of the Physical Society of Japan, 査読有, 85 (2016) 073713 1-4. http://doi.org/10.7566/JPSJ.85.073713

(7) <u>D. Aoki</u>, <u>F. Honda</u>, <u>Y. Homma D. X. Li</u>, R. Settai, H. Harima, and Y. Onuki, Large cyclotron effective mass detected by de Haas-van Alphen effect in YbCu₂Si₂, Journal of the Physical Society of Japan, 査読有, 84 (2015) 035002 1-2. http://dx.doi.org/ 10.7566/ JPSJ. 84. 035002 (8) Y. Hirose, S. Tomaru, S. Sato, S. Ota, S. Kurahashi, T. Takeuchi, <u>F. Honda, Y.</u> <u>Homma, D. X. Li, D. Aoki</u>, R. Settai, Single crystal growth and magnetic properties of RCu₉Sn₄ (R:rare earth metals), J. Phys.: Conf. Sec., 査読有, 592 (2015) 012034. doi:10.1088/1742-6596/592/1/012034

(9) <u>D. X. Li</u>, <u>Y. Homma</u>, <u>F. Honda</u>, <u>T.</u> <u>Yamamura</u> and <u>D. Aoki</u>, Low temperature spin-glass behavior in nonmagnetic atom disorder compound Pr₂CuIn₃, Physics Procedia, 査読有, 75 (2015) 703-710. doi: 10.1016/j.phpro.2015.12.091

(10) <u>D. X. Li, Y. Homma, F. Honda, T.</u> <u>Yamamura</u> and <u>D. Aoki</u>, Large magnetocaloric effect and magnetic properties in ErCoAl, Physics Procedia, 査読有, 75 (2015) 1300-1305. doi: 10.1016/j.phpro.2015.12.145

(11) H. Doto, Y. Hirose, <u>F. Honda</u>, <u>D. X. Li</u>, <u>Y. Homma</u>, <u>D. Aoki</u>, and R. Settai, Single crystal growth and electronic state of UPd₂Cd₂₀, Physics Procedia, 査読有, 75 (2015) 56-61. doi: 10.1016/j.phpro.2015. 12.009

(12) <u>D. X. Li, T. Yamamura</u>, S. Nimori, <u>Y.</u> <u>Homma</u>, <u>F. Honda</u>, Y. Haga and <u>D. Aoki</u>, Large reversible magnetocaloric effect in ferromagnetic semiconductor EuS, Solid State Communs., 査読有, 193 (2014) 6-10. http://dx.doi.org/10.1016/j.ssc.2014.05 .024

〔学会発表〕(計25件)

 (1) <u>本多史憲</u>、Valenta Jaroslav Valiska Michal、Bara Vondrackova、Petr Opletal、 Jiri Kastil、 Prchal Jiri、 <u>李徳新、青木</u> 大、Sechovsky Vladimir、UIrSi₃の単結晶育 成と物性、日本物理学会第71回年次大会、2017 年3月20日、大阪大学 豊中キャンパス

(2) 望月健生、清水悠晴、近藤晃弘、<u>本間佳</u> <u>哉、李徳新、青木大</u>、松尾晶、金道浩一、重 い電子系反強磁性超伝導体UNi₂Al₃の強磁場磁 化過程、日本物理学会第71回年次大会2017年3 月20日、大阪大学 豊中キャンパス

(3)仲村愛、<u>本多史憲、本間佳哉、李徳新、</u> 清水悠晴、Arvind Maurya、大貫惇睦、播磨 尚朝、<u>青木大、ThCu₂Si₂の単結晶育成とドハー ス・ファンアルフェン効果、日本物理学会第 71回年次大会、2017年3月20日、大阪大学 豊 中キャンパス</u>

(4) <u>本間佳哉</u>、仲村愛、清水悠晴、<u>李徳新</u>、 <u>本多史憲、青木大</u>、仲間隆男、大貫惇睦、日 本物理学会第71回年次大会、多段磁気転移を 示すEu_{1-x}La_xAl₄ (x=0, 0.2)のメスバウアー分 光測定、2017年3月20日、大阪大学 豊中キャ ンパス

(5) 中村優希、中島美帆、天児寧、仲村愛、 <u>李徳新、本多史憲、青木大</u>、郷地順、上床美 也、単結晶Ce₂T₃Ge₅ (T=Ir, Co, Pd)の物性と 圧力効果、日本物理学会第71回年次大会、2017 年3月19日、大阪大学 豊中キャンパス

(6)<u>李徳新、本間佳哉</u>、仲村愛、清水悠晴、 <u>本多史憲、山村朝雄、青木大</u>、電荷密度波転 移を示す強磁性物質SmNiC2における強い磁気 異方性、本物理学会第71回年次大会、2017年3 月17日、大阪大学 豊中キャンパス

(7) <u>本多史憲</u>、岡内啓悟、仲村愛、<u>李徳新</u>、 <u>青木大</u>、赤嶺拡、安次富洋介、辺土正人、仲 間隆男、大貫惇睦、EuRh₂Si₂単結晶および関連 物質の圧力誘起価数転移と臨界終点、日本物 理学会2016年秋季大会、2016年9月16日、金沢 大学 角間キャンパス

(8)岸本恭来、小手川恒、藤秀樹、齋藤開、 網塚浩、<u>本間佳哉</u>、仲村愛、<u>李徳新、本多史</u> <u>憲、青木大</u>、UNi4Bの電流磁気効果のNMRによ る検証、日本物理学会2016年秋季大会、2016 年9月15日、金沢大学 角間キャンパス

(9)徳永陽、仲村愛、<u>青木大</u>、服部泰佑、酒 井宏典、 神戸振作、 <u>本多史憲、本間佳哉</u>、 <u>李徳新</u>、清水悠晴、サイクロイド型磁気秩序 を示すUPtGeのPt-NMRによる研究、日本物理学 会2016年秋季大会、2016年9月15日、金沢大学 角間キャンパス

(10)仲村愛、<u>本多史憲、本間佳哉、李徳新</u>、 清水悠晴、大貫惇睦、<u>青木大</u>、ThSb₂とThBi₂ の単結晶育成とドハース・ファンアルフェン 効果、日本物理学会2016年秋季大会、2016年9 月13日、金沢大学 角間キャンパス

(11) <u>李徳新、本間佳哉</u>、仲村愛、<u>本多史憲</u>、 山<u>村朝雄、青木大</u>、Ho₂PtSi₃における強磁性ク ラスターグラス挙動および大きな磁気熱量効 果、日本物理学会2016年秋季大会、2016年9 月13日、金沢大学 角間キャンパス

(12) <u>李徳新、本間佳哉</u>、仲村愛、<u>本多史憲</u>、 <u>山村朝雄、青木大</u>、擬三元系ウラン化合物 U(Rh_{1-x}Ir_x)Geにおける磁気フラストレーショ ン状態の形成究、日本物理学会第71回年次大 会、2016年3月22日、東北学院大学 泉キャン パス

(13) <u>本多史憲</u>、仲村愛、<u>李徳新、本間佳哉</u>、 芳賀芳範、<u>青木大</u>、U₂T₃Si₅(T: Rh, Ir)の物性 と圧力効果 II、日本物理学会第71回年次大会、 2016年3月22日、東北学院大学 泉キャンパス

(14) 三宅厚志、仲村愛、志村康成、<u>本間佳哉</u>、 <u>李徳新、本多史憲</u>、徳永将史、<u>青木大</u>、UPtGe の強磁場磁化過程、日本物理学会第71回年次 大会、2016年3月20日、東北学院大学 泉キャ ンパス

(15) <u>本間佳哉、李徳新</u>、仲村愛、<u>本多史憲</u>、 <u>青木大</u>、Co_{1-x}Fe_xA1 (x=0.02, 0.04) 単結晶の 磁性、日本物理学会第71回年次大会、2016年3 月20日、東北学院大学 泉キャンパス

(16)<u>青木大</u>、仲村愛、<u>本多史憲、本間佳哉</u>、 <u>李徳新</u>、U₆Coの単結晶育成と超伝導、日本物 理学会第71回年次大会、2016年3月20日、東北 学院大学 泉キャンパス

(17)仲村愛、<u>本多史憲</u>、西村健吾、垣花将司、 辺土正人、仲間隆男、大貫惇睦、<u>本間佳哉</u>、 <u>李徳新、青木大</u>、Th₇Ni₃とLa₇Ni₃の単結晶育成 と物性、日本物理学会第71回年次大会、2016 年3月20日、東北学院大学 泉キャンパス

 (18) 本間佳哉、李徳新、仲村愛、本多史憲、 <u>青木大</u>、UCo_{1-x}Fe_xA1の⁵⁷Feメスバウアー分光、 日本物理学会2015年秋季大会、2015年9月17 日、関西大学 千里山キャンパス

(19) <u>本多史憲</u>,仲村愛,<u>李徳新</u>,<u>本間佳哉</u>, 芳賀芳範、<u>青木大</u>、U₂T₃Si₅(T:Rh, Ir)の物性 と圧力効果、日本物理学会2015年秋季大会、 2015年9月17日、関西大学 千里山キャンパス

(20) <u>李徳新、本間佳哉、本多史憲、山村朝雄</u>、 芳賀芳範、<u>青木大</u>、強磁性半導体EuSにおける 巨大な磁気熱量効果、日本物理学会2015年秋 季大会、2015年9月16日、関西大学 千里山キ ャンパス

(21) <u>李徳新、本間佳哉、本多史憲、山村朝雄</u>、 <u>青木大</u>、新規ウラン化合物U₂Rh₃Ge₅における磁 気的性質、日本物理学会第70回年次大会、2015 年3月22日、早稲田大学 早稲田キャンパス

 (22) 本間佳哉、李徳新、本多史憲、青木大、 URh_{1-x}Fe_xGeの⁵⁷Feメスバウアー分光、日本物理
 学会第70回年次大会、2015年3月22日、早稲田
 大学 早稲田キャンパス

(23) <u>李徳新、本間佳哉、本多史憲、山村朝雄、</u> <u>青木大、U₂Ir₃Si₅単結晶の磁気的性質、日本物</u> 理学会 2014 年秋季大会、2014 年 9 月 8 日、 中部大学春日井キャンパス

(24)<u>本間佳哉、李徳新、本多史憲</u>、仲村愛、 辺土正人、仲間隆男、大貫惇睦、<u>青木大</u>、 (Eu_{1-x}La_x)Al₄(x=0, 0.2)反磁性体の¹⁵¹Euメス バウアー分光、日本物理学会 2014 年秋季大会、 2014 年 9 月 8 日、中部大学春日井キャンパス

(25) 本多史憲、李徳新、本間佳哉、芳賀芳範、 <u>青木大</u>、U₂T₃X₅ (T: Rh, Ir, X: Si, Ge)の高 圧下物性、日本物理学会 2014 年秋季大会、 2014 年 9 月 8 日、中部大学春日井キャンパス

6. 研究組織

(1)研究代表者
 李 徳新(Li Dexin)
 東北大学・金属材料研究所・助教
 研究者番号:40281985

(2)研究分担者
 本間 佳哉(Homma Yoshiya)
 東北大学・金属材料研究所・助教
 研究者番号:00260448

山村 朝雄(Yamamura Tomoo) 東北大学・金属材料研究所・准教授 研究者番号:20281983

青木 大 (Aoki Dai) 東北大学・金属材料研究所・教授 研究者番号:30359541

本多 史憲 (Honda Fuminori) 東北大学・金属材料研究所・准教授 研究者番号:90391268