科学研究費助成事業

平成 2 9 年 6 月 2 1 日現在

研究成果報告書

機関番号: 5 3 2 0 3					
研究種目:基盤研究(C)(一般)					
研究期間: 2014~2016					
課題番号: 2 6 4 2 0 4 0 4					
研究課題名(和文)レーダの三角配置を用いた下層大気圏下における降雪現象測定システムの構築					
研究課題名(英文)Construction of the snowfall phenomenon measuring system in the lowest atmospheric using three radars					
研究代表者					
椎名 徹(SHIINA, TORU)					
富山高等専門学校・電子情報工学科・教授					
研究者番号:80196344					
交付決定額(研究期間全体):(直接経費) 3,900,000円					

研究成果の概要(和文):本研究では、下層大気圏下における降雪現象を高分解能で測定システムの研究・開発 を行った。小型ドップラーレーダ3台にて、地上付近から高度約千mまでの鉛直方向降雪現象を連続的に測定し た。レーダとライダによる後方散乱を解析することにより、3次元空間内の降雪現象を測定するシステムの構築 を行った。更に、地上に設置した降雪粒子画像情報と降水センサーによる降水粒子情報との関係を解析した。降 雨粒子および降雪粒子の粒径と落下速度から降水強度Rを算出し、レーダ反射因子ZとのZ-R関係を降水種類ごと に求めることが可能となった。

研究成果の概要(英文):We developed the new snowfall phenomenon measuring system in the lowest atmospheric layer. The radar reflectivity factor and spectrum were measured using three small K-band Doppler radars and lidar. The image of falling snow particles were simultaneously captured to measure size and falling velocity. Furthermore, the rainfall particle information with the weather sensor was analyzed. The precipitation intensities of rainfall and snowfall were calculated. The radar reflectivity factors of radar and lidar were compared with these intensities.

研究分野:工学

キーワード: 計測システム レーダ 降雪現象

1. 研究開始当初の背景

異常気象の近年、「平成23年豪雪」・「平 成18年豪雪」の記録的な豪雪や低温現象によ る雪氷災害が国内各地で発生している。降雨 に比べて降雪に関する気象予報の研究開発は 遅れており、現在は数時間後の積雪量を予報 している。雪質や降雪強度等の詳細な降雪予 測を行うためには、3次元空間内の降雪現象 を高分解能で測定し、下層大気圏下の降雪過 程を時系列解析することが必要不可欠である。

レーダによる降雪量の測定として、レーダ 反射強度と地上の積雪との関係について、こ れまで研究が行われてきた。気象条件によっ て降雪雲は異なり、降雪粒子も種々変化する ため、レーダ反射強度と降雪強度との相関関 係は降雨と比較して複雑であり、詳細な降雪 測定を行うことは不可能であった。気象レー ダの測定範囲は数+kmと広範囲であり、距 離分解能は数 km 程度と粗い。また、レーダ を自転して半天球面を測定するには数分以上 を必要とし、3次元空間内の降雪分布を同時 に測定することは困難であった。

2. 研究の目的

本研究では、小型垂直ドップラーレーダを 一定距離間隔で3台配置し、各レーダから得 られた鉛直方向降雪分布相互の時空間解析を 行い、レーダで囲まれた三角地帯内の3次元 空間内における降雪現象を時系列で捉える。 更に、この三角地帯内を落下する降雪粒子映 像を画像解析し、降雨粒子・雲との同時測定 を行い、降雪雲から地上付近までの下層大気 圏下における降雪過程を詳細に測定するシス テムの構築を目指す。具体的な研究目標は、 以下の通りである。

- (1)降雪現象の高分解能時空間測定システム の構築
- (2) 降水粒子によるレーダ反射因子の解析

3. 研究の方法

本研究で使用する小型ドップラーレーダ (METEK 製, MRR-2) は軽量で可搬性に優 れ、地上付近から高度数千 m (最小 35m 間 隔)までの鉛直方向降雪現象を連続的に測定 することが可能である。レーダ3台を配置す ることにより、3 次元空間内の降雪現象測定 システムの構築を目指した。

(1) 降雪現象の高分解能時空間測定システム の構築

小型垂直ドップラーレーダを数十 m 以 上の間隔で3台配置し、各レーダから得ら れた鉛直方向降雪分布の相互時空間解析 を行う。レーダで囲まれた三角地帯内の3 次元空間内の降雪現象を電磁界分布から 明らかにする。更に、雲の測定も同時に行 う。

(2) 降水粒子によるレーダ反射因子の解析 高解像度 CCD カメラを使用し、三角地帯 内を落下する降雪粒子の雪質および形状 を測定する画像処理システムの構築を行 う。更に、降雪粒子と降雨粒子の同時測定 を行い、落下中の降水粒子によるレーダ反 射因子の解析を行う。

4. 研究成果

下層大気圏下における降雪現象測定システ ムの構築を目指し、以下の成果が得られた。

(1) 質量フラックスを用いた降雪現象の解析

降雪粒子の降水量への寄与を考慮するため、 質量フラックスの導入を行い、降雪の時間推 移と降水量の定量化を行なった。

①質量フラックス

質量フラックスは、降雪粒子の質量に落下 速度を乗じた量である。粒子の密度と体積か ら質量フラックスを求めた。図1に粒径と落 下速度に対するフラックスの関係を示す。降 雪粒子の画像観測システムより得られた粒径 と落下速度分布を図2に示す。図中の曲線は、 雪片とあられの経験式を示す。図において粒 径が大きい粒子にフラックスの大きな部分が あり、降水量への寄与が大きいことがわかる。 また、同じ粒径でもあられと雪片ではフラッ クスが異なり、粒子の種類による降水寄与の 違いが確認できる。

②質量フラックス中心の動態

質量フラックス分布を数量的に表現するためにフラックス中心(CFD)を導入する。時刻ごとの粒径、落下速度をフラックスで重みづけしたこの位置座標は、粒子の種類を顕著に反映する。図3にCFDの推移例を示す。小さ

な雪片からあられに変化し、次第に大きな雪 片に変化していることがわかる。

降雪の粒径・落下速度分布を用いた判別と して、個々の粒子が降雪量に寄与する質量フ ラックス図を作成した。フラックスの中心を 加えることで降雪の時間推移の特徴を連続的 かつ定量的に把握することが可能となった。 レーダによる降雪観測との対応付けにより、 降雪メカニズムの解明に役立つことが期待さ れる。

(2) レーダとグランドトゥルースの比較

小型ドップラーレーダを用いて局所での降 水量を測定し、地上での実測値との比較を行 った。

レーダと降水センサー

レーダには、METEK 製の Micro Rain Radar (以 下 MRR と略す)を用いる。MRR は、レーダ送 信部から波長 24.2[GHz]の電磁波を送信し、降 水粒子によって反射される波の受信周波数の 変化を用いて降水の移動速度や高度ごとのレ ーダ反射因子、ドップラースペクトルを取得 し、30 秒ごとに記録される。これらのデータ を解析することにより降水強度を算出する。

MRR とグランドトゥルースでのレーダ反 射因子 Z の比較を行った。地上の測定には降 水センサーシステム(OTT 製 Parsivel)を用いた。 MRR と降水センサーによるレーダ反射因子 Z の関係を図4に示す。MRR の測定は高度 70m のデータを使用した。また、この測定は 2015 年 6~10 月の降雨データ 4133[min]を用いた。 MRR の測定値が降水センサーのデータと一 致していることがわかる。このことから MRR の有効性が確認された。

次に、種々の降雪現象について解析を行っ た。図5に降雪時のレーダ反射因子時間変化 を示す。高度100[m]付近での降雪粒子が次第 に地上に到達する様子がわかる。この時の高 度ごとの落下速度分布の推移を図6に示す。

② Z-R 関係

MRR のレーダ反射因子 Z と降水センサー から得られる降水強度 R との Z-R 関係を解析 した。降雪時の一例を図 7 に示す。図より、 Z-R 関係のパラメータ B,βを算出した。降雨の 場合、高度に依存せず高い相関が得られ、降 雪時には高い高度では異なる現象が見られた。 降雪の一例を表 1 に示す。以上より、レーダ から降水量を算出すること可能になった。

表 1 降雪時の B,β

	70m	105m	210m	315m	420m	525m
В	26.7	33.2	42.6	53.7	65.8	77.8
β	0.735	0.692	0.567	0.413	0.239	0.116
相関係数(r ²)	0.726	0.681	0.495	0.311	0.133	0.0414

(3) 降水センサーを用いたレーダ特性の取得 降水センサーを用いて、様々な降水種類ご との Z-R 関係を解析し B, βの算出を行う。

①光学式ディスドロメータ

降水センサーとして、OTT 社の Parsivel2 を 使用する。Parsivel2 は 2 つのセンサヘッドを 持ち、送信部から幅 30[mm]×長さ 180[mm]の 帯状レーザ光(波長 780nm)を出力し、受信部で 受光する機器である。レーザ光を通過する粒 子を観測することで、その降水粒子の粒径、 落下速度、個数および降水の種類を測定する。

粒径は、送信部からの出力電力と受信部で の受信電力の差により測定する。粒子がレー ザ光を通過したときに低下した電力の大きさ により、粒径が決定される。落下速度は、信号 の持続時間により測定する。

②降雨

粒径と落下速度を測定することにより降水 強度とレーダ反射因子を求める。降雨時の粒 径と落下速度の関係を図8に示す。2015年8 月17日18時30分~18時50分の20分間の データを示す。また、Z-R関係は図9のよう になり、Z=198R^{1.4}と降雨の一般的なパラメー タに近い結果が得られた。

③降雪

降雪時のレーダ反射因子と降雪強度を解析 した。降雪強度は降雪粒子の密度に依存する ため、粒径と落下速度から推定する必要があ る。雪片の場合の Z-R 関係を図 10 に示す。 種々の降雪粒子についてのパラメータ B,βを 表 2,3 に示す。

降水センサーから得た粒径と落下速度を用いて、ZとRの算出方法を確認した。算出した値を用いて、様々な降水種類ごとの Z-R 関係の解析を行い、B,βを算出した。種々の降水粒子について解析することにより、レーダへの適用が可能である。

表 2 雪片時の B.β

			4		
	Pras	sivel	Calculated value		
	В	β	В	β	
2016/1/19	118	1.4	672	1.6	
2016/1/21	98	0.9	391	1.1	
2016/1/23	814	1.8	153	1.5	
2016/1/24	181	1.1	453	1.2	
2016/1/25	40	1.8	221	1.7	
平均	250	1.4	378	1.4	

表 3 あられ時の B,β

	Pra	sivel	Calculated value		
	В	β	В	β	
2016/1/19	600	0.67	537	1.1	
2016/1/20	429	0.97	1051	1.5	
2016/1/20	381	1.0	823	0.92	
2016/1/23	124	0.68	340	0.52	
2016/1/24	181	1.1	453	1.2	
2016/1/25	40	1.8	221	1.7	
平均	293	1.0	571	1.2	

(4) ライダを用いた雲と降水情報の取得

ライダを用いて後方散乱係数の測定・解析 と降水センサーによる降水種別の測定を行う ことにより、雲情報と降水情報の同時取得を 目指した。

①ライダと降水センサー

測定には Vaisala 社シーロメータ CL31 を使 用した。波長 910[nm]のパルス状レーザ光を上 空に放射し、雲や降水粒子で反射され、受信 部に戻ってくる反射光強度から後方散乱係数 を算出する。雲底高度は、雲底で後方散乱し 受信部に戻ってくる所要時間から算出する。 高度 7700[m]までの後方散乱係数を 10[m]間隔 で 30 秒ごとに測定する。

一方、地上付近の降水情報と降水強度の測 定には、OTT 社 Parsivel2 を利用した。更に、 天気情報として、地上付近に設置した降水検 知センサの降水種別を利用する。降水種には SYNOP (surface synoptic observations:地上実況 気象通報)に従う表記を用いる。

②ロバスト変分ベイズによる雲と

降水情報の取得

ライダの後方散乱係数は雨粒や氷の粒が浮 遊する高度に強い散乱が現れる。後方散乱係 数の高度分布を高度ごとの散乱回数に関する ヒストグラムであると仮定し、混合 t 分布に 対するロバスト変分ベイズによる解析を行う。 高度分布を生成する各クラスに t 分布を仮定 し、一つのクラスが一つの降水あるいは雲に 由来するとみなす。ロバスト変分ベイズによ り必要なクラス数の推定が可能である。時間 ごとの後方散乱係数に対して適用することで、 雲の特徴を示す雲頂、雲底、雲層の算出を行 う。

高度ごとの後方散乱係数にロバスト変分ベ イズを適用した例を図11に示す。ロバスト変 分ベイズ法により得られる雲情報および落下 中の降水粒子情報との関係を解析する。

図 11 ロバスト変分ベイズの適用例

図 12 に各クラスの層厚と中心高度の関係を 示す。広く分布した降水粒子群と雲群が異な る範囲に分布していることがわかる。

図 12 各クラスの特徴量の時間変化

降水検知センサーで降水種類を特定し、ロバ スト変分ベイズ法により得られた雲と降水粒 子の特徴を解析し、降水粒子群と雲を抽出す ることが可能となった。しかしながら、両者 を分類する必要がある。

③雲と降水粒子群の分類

ロバスト変分ベイズで作られた特徴量(中 心高度、層厚、後方散乱係数)を混合ガウス分 布モデルとみなし、変分ベイズ法により分類 する。

降雨があった 2016 年 6 月 13 日の一日分のラ イダ情報に対して変分ベイズ法を適用した。 図 13 に後方散乱係数の時間変化を示す。また、 図 14 に中心高度と層厚と散乱係数の関係を 示す。散乱係数が大きく、中心高度と層厚に 対してある一定の範囲に分布が集中している class0 は雲、散乱係数が小さく、中心高度と層 厚に対して広く分布している class1 は降水粒 子と考えられる。次に、降雪時 2016 年 1 月 29 日の後方散乱係数の時間変化と変分ベイズ法 によるクラス分けの結果を図 15, 16 に示す。

降雪時は粒子によってレーザが反射され、雲 情報を取得できないが、粒子が分類されてい ることがわかる。

ライダにより得られた雲中心高度と雲層と 散乱係数に変分ベイズ法を適用することで、 雲と降水粒子の分類を行うことが可能となっ た。

(5) 機械学習を用いた降水種類の判別

小型垂直ドップラーレーダからのレーダ反 射因子のみを用いて、降水種類の判別を試み、 降水種類判別システムの実装を目標とする。

①降水種類判別モデル

降水種類の判別手法としてニューラルネッ トワーク (Neural Network,以下 NN)を用いる。 NN 実装用ライブラリとして Preferred Networks 社の Chainer を利用する。構築した NN は、中間層 1000 ノード、中間層の活性化 関数には ReLU 関数、出力層の活性化関数と してソフトマックス関数、誤差関数に交差エ ントロピーを用いる。入力データには小型ド ップラーレーダ MRR2 のドップラースペクト ル、教師データには降水センサーParsivel にて 測定した降水種類を用いる。時系列を考慮す るため数分間分のドップラースペクトルを入 力する。更に、ディープラーニングのアルゴ リズムの一種である畳み込みニューラルネッ トワーク(Convolutional Neural Network)を導 入する。ドップラースペクトル画像を入力と して、降水種類判別を行う。出力層では各降 水種類の確率が最大の降水種類を選択する。 NNの学習には誤差逆伝播法を用いる。

②降水種類判別システム

降水種類判別モデルを構成し、降水種類判別を行った。訓練データ全てを学習した時点を1エポックとし、30エポックの学習を行った。データの測定期間は2016年1月1日~12月31日である。学習結果の評価の指標には、再現率と適合率の調和平均であるF値を用いる。30エポックの学習において、誤差が最小時の強弱を含む判別結果を表4に示す。

降水 種類	観測数	F値	降水種類	観測数	F值
降水 なし	900	0.945	降水なし	900	0.953
雨	900	0.976	雨 (弱)	300	0.652
			雨 (中)	300	0.660
			雨(強)	300	0.911
明	900	900 0.933	雪 (弱)	300	0.624
			雪 (中)	300	0.568
			雪 (強)	300	0.694
合計	2700	0. 952	合計	2700	0.777

表4 各降水種類の判別

NN を用いた降水種類判別モデルを構成し、 種類判別を行った結果、降水なし、雨、雪の3 分類における判別では良好な F 値が得られた。 強弱を含む判別では、雨の判別精度に比べ雪 の判別精度が低い結果となった。時系列を考 慮して降水種類判別を行うことで、さらなる 判別精度の向上が期待できる。

5. 主な発表論文等

(研究代表者、研究分担者及び連携研究者に は下線)

〔学会発表〕(計 2 件)

- ①<u>椎名 徹</u>、ドップラーレーダの観測データ用 いた降水種類判別システムの構築、電子情 報通信学会総合大会、2017年3月23日、 名城大学(愛知県名古屋市).
- ②<u>椎名 徹</u>、ドップラーレーダの観測データを 用いたニューラルネットワークによる降 水種類判別、電子情報通信学会総合大会、

2016年3月16日、九州大学(福岡県福岡市).

6. 研究組織

(1)研究代表者
椎名 徹 (SHIINA TORU)
富山高等専門学校・電子情報工学科・教授
研究者番号: 80196344

(2)研究分担者 なし

(3)連携研究者 なし

(4)研究協力者

なし