科学研究費助成事業 研究成果報告書

平成 28 年 6 月 2 0 日現在

機関番号: 12102

研究種目: 挑戦的萌芽研究 研究期間: 2014~2015

課題番号: 26560329

研究課題名(和文)個人差・多要因・効果量を重視した応用科学独自の研究法:教育領域における活用

研究課題名(英文)Application of an original, applied science research method focusing on outcomes and individual differences to the field of education

研究代表者

坂入 洋右(SAKAIRI, Yosuke)

筑波大学・体育系・教授

研究者番号:70247568

交付決定額(研究期間全体):(直接経費) 2,700,000円

研究成果の概要(和文):実践領域への応用が可能な科学的知見を得るには、個人差と多変量を重視した応用科学独自の研究方法を構築する必要がある。本研究者らは、アウトカムを予測可能な"包括的媒介変数"を指標として、各個人が、それぞれの能力発揮に適した状態にコンディションを自己調整する個性対応型"身心の自己調整システム"を開発した。今回は、青少年を対象とした5つの研究を行い、このシステムの教育領域での活用の有効性を確認するとともに 、新たな応用科学的研究の実施方法を具体的に示した。

研究成果の概要(英文): We have developed an original, applied science research method that focus on outcomes and individual differences in sports. The purpose of the current study was to apply this novel method to the field of school education. In a demonstration of this method, five studies were conducted to improve the psychological state and learning performance of elementary, junior high, and high school students, by using "the Self-Regulatory System for Body and Mind (patent No.4378455)". These studies confirmed the effectiveness of the Self-Regulatory System for school children.

研究分野: 心理学

キーワード: 身体教育学 セルフコントロール 研究法 子ども 二次元気分尺度 個人差 健康心理学

1.研究開始当初の背景

現在、スポーツ・健康領域に限らず応用科 学の多くの領域において、「個人差や効果量 を重視した新たな研究方法」が模索されてい る。たとえば心理学では、一般化することが 困難な個人差の要因が重視され、事例研究の 再評価や質的研究の活性化が進んでいる(下 山,2008)。また、アメリカ心理学会(2009) の論文投稿規定では、統計的有意差以上に効 果量の記載が重視されている。しかし、実践 現場において大きな効果量を得るためには、 複雑な現象に対して単一の要因がもたらす 効果は限定的なので、多くの要因の複合的な 効果を検証する必要がある。基礎科学の研究 法の借用ではなく、個人差や多要因を考慮し た応用科学独自の研究法の構築が希求され ている。

スポーツや教育や産業の実践現場では、目 的とするアウトカムの効果量を最大にする ため、選手や生徒や社員の個性や条件の違い に合わせて実践方法を工夫・調整する。その ため、その実践方法の有効性の検証は事例的 なものとなり、一般化が困難であることが多 い。しかし、個人ごとに実践方法が異なって も、アウトカムと関連する「包括的媒介変数」 を設定し、それを共通の指標として効果を数 値化・可視化することによって、実践システ ム全体の有効性を実証的に検討し、結論を一 般化して論じることが可能になる。本研究者 らは、「個性対応型"身心の自己調整システ ム"(特許取得:第4378455号)」の研究を推 進し、「課題に適した心理状態(包括的媒介 変数)」を個別に設定して、身体を活用した 多様な方法で各自の心理状態を調整するこ とに取り組んできた。現在までに、各種のス ポーツにおけるパフォーマンスと「課題に適 した心理状態」との関係が、種目・プレイ・ 個人ごとに見出されており、"身心の自己調 整システム"の有効性もある程度確認できた。 このようなアウトカムの効果量の向上を 目的とし、個人差と多要因を考慮した研究法 の理論と方法は、スポーツ領域に限らず教育 や産業の領域など、心身の状態の最適化によ る課題の遂行成績の向上を求める実践現場 を持つ応用科学の領域に、広く適用可能だと

日的とし、個人をと多安内を考慮した研究法 の理論と方法は、スポーツ領域に限らず教育 や産業の領域など、心身の状態の最適化に現 る課題の遂行成績の向上を求める実践現場 を持つ応用科学の領域に、広く適用可能だと 考えられる。そこで本研究では、実践応用に 適した新しい科学的研究法の教育領域に応 ける活用の具体的なモデルとして、小学校、 中学校、高等学校および大学の児童・生徒・ 学生に"身心の自己調整システム"を導入し、 心理状態の調整による学習課題のパフォー マンスの向上をアウトカムとした研究を遂 行する。

2. 研究の目的

研究代表者らは、これまでスポーツ領域を中心に、主として大学生や一般成人を対象として、「個性対応型"身心の自己調整システム"」の研究を推進し、「課題に適した心理状態(包括的媒介変数)」を個別に設定して、

身体を活用した多様な方法で各自の心理状態を調整し、パフォーマンスを向上させることに取り組んできた。

今回は、この自己調整システムおよび新たな応用科学的研究法の適用範囲を教育領域に拡大することを目指して、小学生・中学生・高校生を対象とした研究を実施する。それらの研究を通して、"身心の自己調整システム"を青少年が活用することの有効性を確認するとともに、教育領域における応用科学的研究法の実施モデルを具体的に提示することが、本研究の目的である。

3.研究の方法

個性対応型"身心の自己調整システム"を 青少年に適用し、教育領域における活用の有 効性を確認するとともに、それらの研究の推 進を通して、応用科学的研究法の実際を具体 的に提示するという目的を達成するために、 以下の5つの研究を実施し、その成果を発表 した。

まず、"身心の自己調整システム"を子ど もに適用する前段階の基礎的研究として、大 学生を対象に、心理状態の調整技法である各 種の軽運動や音楽およびリラクセーション 法の心理的効果の特徴を、二次元気分尺度 (坂入・征矢・木塚,2009)を用いて比較検 討した(研究)。次に、起床時や疲労時に 動的運動(アクティベーション)および自律 訓練法(リラクセーション)を実施すること によって、心理状態が調整され、数的処理お よび注意力測定課題の遂行成績が上昇する ことを確認した(研究)。さらに、小学生・ 中学生を対象として、各児童・生徒が姿勢を 調整することによって、心理的活性度および 交感神経系の活性が高まり、その活性度の変 化に応じて計算課題と聞き取り課題の遂行 成績が向上することを確認した(研究)

以上の成果を踏まえた実践的研究として、 小学生(研究)および高校生(研究)を 対象とした介入研究を実施した。研究 では、 小学6年生を対象に、スポーツのテスト場面 で各児童が高いパフォーマンスを発揮する 際の心理状態の特徴をそれぞれ調べ、個人差 に応じて適した動作や呼吸法を選択して実 施することによって、パフォーマンス発揮に 適した心理状態に自己調整できることを確 認した。研究 では、高校生運動部員を対象 に、まず各生徒にとって最適なパフォーマン スを発揮する際の心理状態の特徴を明らか にし、その状態に自己調整できるようになる ため、身心の自己調整システムを活用した介 入を3カ月間実施し、その有効性を検討した。 これらの研究を通して、"身心の自己調整

これらの研究を通して、"身心の自己調整システム"の青少年への適用の有効性を検証するとともに、「包括的媒介変数」を用いた新しい研究法の教育領域における活用の方法を具体的に示し、スポーツ領域におけるこれまでの研究成果とあわせて、基礎科学とは異なる応用科学独自の研究法の理論と方法

をまとめ、多分野の学会での招待講演などを 通して社会に発信した。

4. 研究成果

(1) 研究 : タイプの異なる軽運動と音楽による心理状態の調整効果の比較検討

大学生 146 名を被験者として、軽運動およ び音楽を動的・静的タイプに分けて実施し、 それら実施や聴取がもたらす心理的効果の 特徴を二次元気分尺度を用いて検討し、以下 の結果を得た。音楽と軽運動は、気分を快適 に改善させる効果があることが確認された。 しかし,そのタイプによって生じる気分の変 化の特徴は異なっていた。具体的には,動的 音楽と動的運動では,気分の活性度が増加し (p<.001)、安定度が低下すること(p<.05) が確認された一方、静的音楽と静的運動では 安定度が増加することが示された(p<.01)。 さらに、静的運動においては、安定度だけで なく活性度も増加すること(p<.001)がわか った。また、音楽と運動がもたらす快適な気 分の変化については、音楽を聴取することよ り、身体を動かすような運動を実施する方が、 効果量が大きいことが確認された。今後の研 究においては、心理状態を調整するための介 入技法として、主に身体技法を活用していく。

(2) 研究 : 身体技法を活用した心理状態の 調整による課題成績の向上効果の検討

大学生 29 名を被験者として、眠気や疲労などで身心のコンディションが低下する早朝時(眠気時)と強度の運動後(疲労時)に、5 分間の動的運動を行うアクティベーション条件と、5 分間の筋弛緩法・呼吸法・自律に表を行うリラクセーション条件と何も行わない非介入条件の3条件を、実施順序のカウンターバランスを取って実施した。その際の心理状態の変化を、二次元気分尺度を用いて測定するとともに、数的処理・判断力測定課題と言語記憶力測定課題を実施させ、介入条件の違いによる課題成績の差を比較した。

結果として、アクティベーションを実施することによって、眠気時には、心理状態の活性度と快適度が上昇するとともに(p<.001)数的処理・判断力測定課題の成績が向上したが(p<.001)、疲労時には、活性度の上昇り外の効果が確認されなかった。また、リラクセーションの実施によっても、眠気時には、心理状態の活性度と快適度が上昇するといても、心理状態の安定度と快適度が上昇するとともに(p<.001)、集中力(p<.05)も向上することが確認された。

以上の結果から、目的や状況に応じた身体技法の実施によって、認知課題の遂行に適した快適な心理状態へ自己調整することが可能であり、数的処理や判断力を測定する認知課題のパフォーマンスが向上する効果があることが確認された。

(3) 研究 : 小学生および中学生を対象とした姿勢の調整による心理状態の調整および学習課題成績の向上効果の検討

小学校高学年の児童および中学生 25 名を対象に、姿勢の調整による心理状態の変化およびそれに伴う学習課題の遂行成績の変化について検討した。姿勢の調整と課題の遂行に伴う心理状態の変化は、二次元気分尺度を用いて測定し、学習課題としては、計算課題・聞き取り課題・単語記憶課題を実施した。

結果として、通常姿勢条件と比較して調整姿勢条件では、二次元気分尺度で測定された心理状態の活性度および快適度が、課題終り時まで高い水準に維持された。また、心由の限限間隔からローレンツプロットを作成して算出した交感神経系の活性度に関しても、の当時を姿勢条件において、交感神経活性が計算を変勢条件において、交感神経活性が計算を変勢条件において、交感神経活性が計算を変勢条件において、交感神経活性が計算を表が間き取り課題の得点が、調整姿勢条件の方が有意に高かった(p<.05)。さら変勢の調整による心理状態の活性度の変に、姿勢の間には、有意な正の相関関係(r=.43 および r=.42,p<.05)があることが確認された。自然により、のな思から、からではできない。

以上の結果から、小中学生でも、自分の身体を活用して心理状態を学習パフォーマンスの発揮に適した状態に調整し、学習課題の遂行成績を向上させられることが確認された。

(4) 研究 : 小学生を対象とした"身心の自己調整システム"の有効性の検討

個人差を考慮した介入による実力発揮を目的として、小学6年生13名を対象に研究を実施した。サッカーのロングキックにおけるパフォーマンス発揮に適した心理状態を、二次元気分尺度を用いて個別に調べ、その状態に近づけるための動作や呼吸法を個人ごとに設定した。2週間の練習を行った後、パフォーマンスのテストを2条件で実施した。

結果として、ロングキック時の心理状態は、通常時と比べてテスト時に有意に変化し(p<.01) 各個人の理想の状態から大きく離れたが、動作や呼吸法を行う条件では、テスト時の緊張場面においても、理想に近い心理状態が維持されたことが確認された。しかし、ロングキックの距離を指標としたパフォーマンスに関しては、成績の向上は見られたが、有意な効果は確認できなかった。

(5) 研究 : 高校生弓道部員を対象とした "身心の自己調整システム"の有効性の検討 個人差を考慮した介入による実力発揮を目的として、高校弓道部員 13 名を対象に、二次元気分尺度を用いてパフォーマンス発揮に適した心理状態を調べた。その結果、弓道パフォーマンス前の最適心理状態は、個々に異なっていることが明らかになった(図1

参照)。そこで、各個人の心理的特徴が確認 できた 13 名の高校生弓道部員に対して、個 性対応型"身心の自己調整システム"による 介入を実施した。介入技法としては、心理状 態の個人差をふまえてアクティベーション が必要な選手には運動を中心とした技法を、 リラクセーションが必要な選手には筋弛緩 を中心とした技法を約3ヶ月実施した。パフ ォーマンスについては、試合場面を想定した 練習における最初の4射(1試合分)の的中 (パフォーマンス)を定期的に記録して、介 入の前後の1カ月間の的中率がどのように変 化しているか確認した。その結果、チーム全 体の 4 射的中率(13 名の平均)が、"介入前" の54.1(±3.8)%から"介入後"の59.8(± 2.7) %まで上昇した。

以上の結果は、個人差に応じた心理状態の自己調整によるパフォーマンスの向上が、高校生においても可能であることを示しており、"身心の自己調整システム"の高校生への適用が有効であることが確認された。

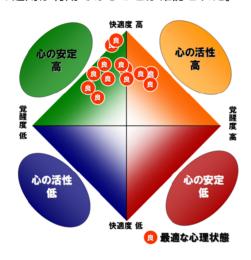


図 1. 実力発揮に適した心理状態の個人差

(6) 新たな応用科学的研究法の理論と方法

スポーツ・教育・産業などの領域では、目的とする課題の特徴と各個人の特性に応じた身心のコンディションの最適化による課題の遂行成績の向上が求められている。そのような実践領域への応用が可能な科学的知見を得るためには、現在の基礎科学的研究法だけでなく、個人差と多変量を重視した応用科学独自の研究方法を構築する必要がある。

研究代表者らは、目的とするアウトカムの効果量の向上を目的とし、"包括的媒介変数"の活用によって個人差・多要因を重視した応用科学独自の研究法の理論と方法を構築し、学会や社会に提案してきた。今回は、これまでのスポーツ領域における研究成果に、教育領域での研究成果を加えて、日本心理医論部学会連合(坂入 2015, 発表)日本体育測諸学会(坂入 2016, 発表)などで招待講演を行い、新たな応用科学独自の研究法の理論と具体的方法について、発信を行った。

5 . 主な発表論文等

[雑誌論文](計 1 件)

中塚健太郎,清水武,金ウンビ,坂入洋右:練習前における心身の状態の違いが自律訓練法の心理的効果へ与える影響.自律訓練研究,34:14-23,2014 査読有

〔学会発表〕(計7件)

坂入洋右: 心理状態の特徴と変化を測定し評価する「心のダイアグラム」の開発.第15回日本体育測定評価学会(招待講演),2016.2.28,二松学舎大学(東京都千代田区)

坂入洋右:アウトカムを重視した応用科学独自の研究法 個人差と複雑な要因を無視しないための包括的媒介変数の活用 .日本理論心理学会第 61 回大会(招待講演),2015.11.15.関西大学(大阪府吹田市)

宣 輔瓊, 稲垣和希, 金ウンビ, 坂<u>入洋右</u>: 自律訓練法と筋弛緩法の心理状態調整効果 の比較 覚醒水準の違いによる効果の差の 比較 .自律訓練学会第38回大会 2015.9.11, 日本大学(東京都世田谷区)

稲垣和希,<u>坂入洋右</u>,金ウンビ,雨宮怜:パフォーマンス発揮に適した心理状態のスポーツタイプ別特徴.日本健康心理学会第27回大会,2014.11.2,沖縄科学技術大学院大学(沖縄県国頭郡)

谷内花恵,金ウンビ,稲垣和希,<u>坂入洋右</u>: 自律訓練法による気分調整効果の特徴 実施方法の違い及び軽運動との比較 . 日本自律訓練学会第37回大会,2014.10.4,九州大学(福岡県福岡市)

坂入洋右:健康増進と能力発揮のポジティブ心理学・日本心理医療諸学会連合第 27 回大会(招待講演),2014.9.7,日本大学(東京都世田谷区)

Kim,E. & <u>Sakairi,Y.</u>: A comparison of momentary mood states associated with high athletic performance in various of Sports. 7th Asian-South Pacific Association of Sport Psychology International, 2014.8.8, National Olympics Memorial Youth Center (東京都渋谷区)

6.研究組織

(1)研究代表者

坂入 洋右(SAKAIRI, Yosuke) 筑波大学・体育系・教授 研究者番号:70247568

(2)研究分担者

中塚 健太郎 (NAKATSUKA, Kentaro) 徳島大学・大学院ソシオ・アーツ・アンド・ サイエンス研究部・准教授 研究者番号: 00609737 三田部 勇 (MITABE , Isamu) 筑波大学・体育系・准教授 研究者番号: 00709230

清水 武 (SHIMIZU , Takeshi)

筑波大学・スポーツR&Dコア・研究員

研究者番号:20613590