科学研究費助成事業

研究成果報告書

機関番号: 13901 研究種目: 挑戦的萌芽研究 研究期間: 2014~2015 課題番号: 26630311 研究課題名(和文)酸化物双結晶を用いた転位イオン伝導特性の評価

研究課題名(英文)Electric conductivity measurements along dislocations using bicrystal technique

研究代表者

中村 篤智 (NAKAMURA, Atsutomo)

名古屋大学・工学(系)研究科(研究院)・准教授

研究者番号:20419675

交付決定額(研究期間全体):(直接経費) 3,100,000円

研究成果の概要(和文):転位は結晶中の原子配列の連続性が局所的に乱れた線状の欠陥であり,母相結晶と全く異なる原子構造を有している.こうした転位の原子構造・配列・組成等を制御することで,転位に基づく新奇物性発現が期待できる.本研究では,酸化物材料中の転位の電気伝導特性を評価することを目的に,双結晶を利用して周期的な転位構造を形成させ,転位に沿った電気になった時間のにより解析するととの転した電気になった電気になったすであるに、 た、その結果,転位の構造が粒界の方位関係により変化することが確認できたとともに , 特異な構造を有する転位構造 で電気伝導特性が発現することが明らかとなった . た

研究成果の概要(英文):Dislocations in oxide materials play an essential role not only in mechanical properties but also in functional properties. A dislocation has a dangling bond array at its core, and a localized strain field is induced in the vicinity of the core. As a result, the core structure of dislocations can affect various physical properties of crystals such as electrical properties, optical properties and magnetic properties. In this study, therefore, we investigated the atomic structures and electrical properties of dislocations in oxide materials by using the bicrystals with low angle tilt grain boundaries. It was found that unique electrical conductivity can be developed even in insulating oxide materials due to the characteristic dislocation structures, which accompanies with special Burgers vector.

研究分野: 格子欠陥

キーワード:転位 拡散 電気伝導 酸化物 双結晶

1. 研究開始当初の背景

転位は結晶中の原子配列の連続性が局所的 に乱れた線状の欠陥であり、母相結晶と全く 異なる原子構造を有している。つまり、転位 は、結晶内部の局所的かつ特異な一次元ナノ 構造体である.この一次元ナノ構造の原子構 造・配列・組成等を制御することで, 転位に基 づく新奇物性発現が期待できる.近年、絶縁 体酸化物結晶中に線状格子欠陥(転位)を導 入し、転位を利用した機能特性発現の研究が なされるようになってきている. 最近, 小角 粒界の規則的な転位配列に基づく周期的導電 性細線の作製に成功した.この研究において, 双結晶法を用いて人工的に作製された小角粒 界は、転位が規則的かつ高密度に配列してい ることから、転位機能の測定が容易となって いる. つまり, 小角粒界の利用は転位物性研 究において非常に有効である.また,転位の 重要な機能特性である高速拡散現象(パイプ 拡散)に注目すると,その拡散速度について の直接的な研究法がこれまで存在せず、その 結果、転位の構造と転位のパイプ拡散速度の 関係についてはほとんど研究が進んでいない 状況にある.

2. 研究の目的

本研究では、人工的に作製した酸化物双結 晶の小角粒界を用いて、小角粒界の構造解析 ならびに界面に沿った電気伝導を測定するこ とで、転位に沿った電気伝導特性を直接的に 測定する.これにより、パイプ拡散を含む転 位の電気伝導特性が評価できると期待してい る.具体的には、

○転位のバーガースベクトルおよび密度が制 御された小角粒界を作製し、その転位構造を 電子顕微鏡を用いて正確に評価する.

○小角粒界の転位列に対して電気伝導特性評 価を行う.

3. 研究の方法

本研究では2つの酸化物単結晶基板を直接 貼り合わせ、高温で保持することによって直 接接合させる.これにより,所定の単一粒界 を有する双結晶を作製できる.図1に双結晶 作製の模式図を示す.金属材料を用いて双結 晶を作製する場合は、大気による酸化を防ぐ ため真空中または雰囲気中で作製する必要が ある. 一方, 酸化物の場合は, 大気中の酸素に よる酸化が影響しない.なお、本研究では小 角粒界を有する双結晶を作製する. 小角粒界 においては、フランクの法則に従って、粒界 を挟んだ2つの結晶粒間の方位差に反比例し て,隣接する転位間の距離が小さくなる.小 角粒界においては転位が極めて規則的に導入 されることから,小角粒界を用いれば,従来 の電気伝導測定法を用いたとしても、単位面 積当たりの物性値から転位1本当たりの特性 を定量的に評価可能と期待される. つまり, 人工的に創製された酸化物小角粒界を転位物 性評価における実験装置の1つとして利用す る.

本研究の測定対象の材料としては,酸素

図 1. 単結晶を分割し, 方位を傾けて一体化す ることで小傾角粒界を作製できる.

イオン伝導体として知られ,塑性変形によ り伝導性向上の報告があるイットリア安定 化ジルコニア,強誘電体の1つであるリチ ウムナイオベートを用いる.

小角粒界を有する双結晶を作製した場合, 設計通りに所定の転位が界面に形成されてい るか否かを確認する必要がある.そのため, 透過型電子顕微鏡法(TEM)観察用の試料を作 製し,形成されている転位構造を解析する.

TEM により小角粒界における転位構造を確認した後,電気伝導性測定用試料を作製し, 一定面積の転位列当たりの電気伝導特性を評価する.測定に当たっては,絶縁体レベルの 微小電流の測定が可能な「半導体パラメータ ーアナライザー」を利用する.

4. 研究成果

YSZ

{100}面から4°傾いた2枚のYSZ単結晶基板を重ね、1500℃で10時間保持することで8°の小傾角粒界を有する双結晶を作製した. 接合界面には{100}/(001)粒界が形成され、 步[100]を有する転位が導入されることになる.図2のその方位の模式図を示す.この双結晶から厚さ数100 μmの薄板状試料を切り出し、電気伝導測定用試料とした.また、電子顕微鏡試料の作製も行った.

図 2. YSZ 双結晶における小傾角粒界の方位 関係を示す. それぞれ単結晶基板を表す.

図3に作製された YSZ 粒界の TEM 明視野像 を示す.転位が周期的に形成されていること が確認でき,結晶方位から設計した通りの粒 界となっていることが分かった.

図 3. YSZ 小傾角粒界の TEM 明視野像.

図4に双結晶界面近傍から得られた HAADF-STEM 像を示す. 接合界面では **b**=[100]の転位 が 3.8 nm の間隔で配列していることが確認 された. フランクの式 $\theta = b/d(\theta : 傾角, b$:バーガースベクトルの大きさ, d :転位間 隔)に従って傾角を算出すると 7.8° となり, 所定の小傾角粒界の作製に成功したことが確 認できた.

図 4. YSZ 小傾角粒界の HAADF-STEM 像.

図 5 に小傾角粒界領域とバルク領域の電気 伝導率を示す.200~300 ℃では、これら2つ の領域の間で電気伝導率に有意な差が検出で きなかった.活性化エネルギーはいずれもお およそ 0.7 eV であり、電気伝導は酸素イオン によるものと考えられる.有意な差が得られ ない原因として電極面積(0.20 mm²)が転位伝 導の有効域に比べ非常に大きいことが挙げら れる.電極面積から概算すると、転位に沿っ たイオン伝導率はバルクの 0~10⁵ 倍と言える. これまで転位に沿ったイオン伝導率は非常に 速いという報告があった.一方で、本結果か らバルク自体の伝導度が高い場合はそれほど バルクと転位で大きな差がないことを示唆し ている.伝導率をさらに正確に評価するには、

図 5. YSZ 小傾角粒界近傍の電気伝導率.バルクと界面で差は小さい.

より小さな電極を用いることが必要であり, 今後の課題である.

LN

結晶学的方位制御が施された LiNb0₃ 単結晶 基板 2 枚を高温で接合することで,小傾角粒 界を有する双結晶を作製した. {0001}/(11-20)小傾角粒界からなる双結晶を作製し,導入 された粒界転位の構造を走査透過型電子顕微 鏡 (STEM) により解析した.また,双結晶から 切り出した薄板状試料を用いて転位線に沿っ た方向の電気伝導特性を調査した.

図6に作製した小傾角粒界近傍で得られた HAADF-STEM像を示す.(0001)/(1120)小傾 角粒界では主に,[0001]方向の成分を持つ3 種類の等価な1/3(1101)転位が組み合わさる ことで[0001]方向の傾角が補償されているこ とが分かった.図7に3種類の等価なバーガ ースベクトルを模式的に示す.これは[0001] 並進ベクトルが大きすぎるために,より小さ な成分の転位で粒界を形成した方がエネルギ ー的に有利であるためと考えられる.これら

図 6. LN の(0001)/<11-20>小傾角粒界で観察された転位の HAADF-STEM 像.

図 7. LN で見られた転位構造の模式図.3 つの 転位で[0001]方向の方位差を補償している. の1/3 (1101)転位はいずれも,さらに2 つの 部分転位へと分解していることが確認された.

一方で、傾角 2°粒界では図 8 に示すような 1/3 (1102)というバーガースベクトルの大き な特殊な転位も形成されることが明らかとな った. 傾角が大きくなり、転位密度が上昇し たことで、転位同士に働く相互作用が大きく なったために、非常に大きな転位が形成され たと推察される.

次に,作製した2種類の小傾角粒界について転位線に沿った方向の電気伝導測定を行った,その結果,傾角2°の粒界において,還元

図 8. LN の方位差の大きな小角粒界で見られ た大きなバーガースベクトルを持つ転位.

図 9. LN の電気伝導測定結果. 方位差の大きな小角粒界でのみ電気伝統特性が発現する.

処理を施すことで高い電気伝導性が発現する ことが確認された(図 9). 還元処理の際に形成 された酸素空孔に伴って,キャリア電子が導 入された可能性が高い.この特殊な電気伝導 特性の発現は傾角 0.3°の粒界では確認されな かったことから,傾角 2°の粒界でのみ見られ た特殊な転位構造が起因していると考えられ る.バーガースベクトルの大きな特殊な転位 近傍では巨大な局所ひずみが生じていると推 察されるが,LiNbO3の自発分極がこのような 転位近傍のひずみと相互作用し,局所的なバ ンド構造の変化を引き起こした可能性がある.

この研究から、LiNbO₃の(0001)/(1120)小 傾角粒界において、形成される転位構造が傾 角の大きさに依存して変化すること、また、 バーガースベクトルの大きな特殊な転位が形 成された粒界において高い電気伝導性が発現 することが確認された.このことから、転位 が母相とは異なる物性を有すること、さらに その物性が転位の構造に大きく起因している ことが分かった.また、LiNbO₃において、双 結晶法により通常では形成されない特異な転 位構造の創製が可能であると期待される.

5. 主な発表論文等 (研究代表者には下線)

〔雑誌論文〕(計11件)

 Boundary Dislocations at a Low Angle Grain Boundary Including Twist Component in LiNbO₃, <u>A. Nakamura</u>, Y. Furushima, E.Tochigi, Y. Ikuhara, K. Toyoura, K. Matsunaga, AMTC Letters, 4, 20-21, 2014, 査読有. http://amtc5.com/amtc_letters4.html

- ② The Structure of Screw Dislocations in an α-Al2O3 Bicrystal with a Low-angle Twist Grain Boundary, E. Tochigi, Y. Kezuka, <u>A.</u> <u>Nakamura</u>, N. Shibata, Y. Ikuhara, AMTC Letters, 4, 8-9, 2014, 査読有.
 - http://amtc5.com/amtc_letters4.html
- ③ First-Principles Study of Energetics of Slip Deformation in NaCl and AgCl, N. Shimoda, Y. Furushima, K. Toyoura, <u>A. Nakamura</u>, K. Matsunaga, AMTC Letters, 4,128-129, 2014, 査読有.

http://amtc5.com/amtc_letters4.html

- ④ A First-Principles Study on Atomic Structure and Stability of Ferroelectric Domains in Lithium Niobate, Goto, K. Toyoura, <u>A.</u> <u>Nakamura</u>, K. Matsunaga, AMTC Letters, 4,124-125, 2014, 査読有. http://amtc5.com/amtc letters4.html
- ⑤ First-principles analysis on proton diffusivity in La₃NbO₇, K. Kato, K. Toyoura, <u>A.</u> <u>Nakamura</u>, K. Matsunaga, Solid State Ionics, 262, 472-475, 2014, 査読有. doi:10.1016/j.ssi.2013.09.011
- ⑥ Stable sites and diffusion pathways of interstitial oxide ions in lanthanum germanate, K. Imaizumi, K. Toyoura, <u>A. Nakamura</u>, K. Matsunaga, Solid State Ionics, 262, 512-516, 2014, 査読有.

doi:10.1016/j.ssi.2013.09.011

⑦ Dissociation of the 1/3 <-1101> dislocation and formation of the anion stacking fault on the basal plane in α-Al₂O₃, E. Tochigi, <u>A. Nakamura</u>, T. Mizoguchi, N. Shibata and Y. Ikuhara, Acta Materialia, 91, 152-161, 査読 有.

doi:10.1016/j.actamat.2015.02.033

⑧ First-principles calculations of divalent substitution of Ca²⁺ in tricalcium phosphates, K. Matsunaga, T. Kubota, K. Toyoura, <u>A.</u> <u>Nakamura</u>, Acta Biomaterialia, 23, 329-337, 2015, 査読有.

doi:10.1016/j.actbio.2015.05.014

ほか3件

〔学会発表〕(計19件)

- Conductive Path Formation Using Lattice Defects in Insulating Oxide Crystals, <u>A.</u> <u>Nakamura</u>, E. Tochigi, Y. Sato, T. Mizoguchi, N. Shibata, Y. Ikuhara, K. Toyoura, K. Matsunaga, CIMTEC 2014 6th Forum on New Materials, (Montecatini Terme, Italy) 15-19 June 2014, Oral.
- Yield drop phenomena in alumina single crystals deformed for basal slip, <u>A. Nakamura</u>, E. Tochigi, N. Shibata, K. Toyoura, K. Matsunaga, P. Lagerlof, Y. Ikuhara, 17th International Conference on the Strength of Materials (ICSMA-17), (Brno, Czech Republic) 9-14 August 2015, Oral.

③ Core Structure of Boundary Dislocations at

Low Angle Grain Boundaries in Lithium Niobate, <u>A. Nakamura</u>, Y. Furushima, E. Tochigi, Y. Ikuhara, K. Toyoura, K. Matsunaga, The 11th International Conference of Pacific Rim Ceramic Societies(PacRim-11), (Jeju Island, Korea) 30 August- 4 Sep. 2015, Oral.

- ④ Artificial Fabrication and Electrical Conduction Property of Charged Domainwalls in Ferroelectric Oxide, <u>A. Nakamura</u>, Y. Sato, E. Tochigi, T. Mizoguchi, N. Shibata, Y. Ikuhara, K. Toyoura, K. Matsunaga, Materials Science & Technology 2015 (MS&T15), (Ohio, USA) 4-8 Oct. 2015, Oral.
- (5) Electrical Conductivity at Artificial Charged Domain-Walls in LiNbO₃, <u>A. Nakamura</u>, 2nd International Symposium on Frontiers in Materials Science (FMS2015), (Waseda University, Japan) 19-21 Nov. 2015, Invited talk.
- 6 Artificial fabrication and electrical conduction of charged domain-walls in ferroelectric materials, <u>A. Nakamura</u>, The Energy, Materials, and Nanotechnology (EMN) Meeting on Ceramics 2016, (Kowloon, Hong Kong) 25-28 Jan. 2016, Invited talk.
- ⑦ ニオブ酸リチウム双結晶における小角粒 界転位の分解構造,<u>中村篤智</u>,古嶋佑帆, 栃木栄太,幾原雄一,豊浦和明,松永克志, 公益社団法人日本顕微鏡学会第 70 回記 念学術講演会,2014 年 5 月,口頭.
- 8 ねじれ成分を有するニオブ酸リチウム小角粒界の転位構造,<u>中村篤智</u>,古嶋佑帆,栃木栄太,幾原雄一,豊浦和明,松永克志,日本金属学会2014年秋期(第155回)講演大会,2014年9月,口頭.
- ⑨ 双結晶法による LiNbO3 小角粒界の創製 とその転位分解構造, 中村篤智, 古嶋佑 帆, 栃木栄太, 幾原雄一, 豊浦和明, 松永 克志, 第58回日本学術会議材料工学連合 講演会, 2014 年 10 月, 口頭.
- 10 結晶格子欠陥を用いたナノスケール構造 と物性の制御, <u>中村篤智</u>, 日本材料学会 理事会主催企画 微小材料強度学研究集 会 実験編, 2014 年 12 月, 講演.
- 強誘電体中の小角粒界における転位構造 と物性,<u>中村篤智</u>,古嶋佑帆,栃木栄太, 幾原雄一,豊浦和明,松永克志,日本機 械学会 2015 年度年次大会,2015 年 9 月, 口頭.
- 12 酸化物双結晶を用いた転位の構造解析と 物性評価, <u>中村篤智</u>, 日本金属学会 2015 年秋期(第 157 回)講演大会, 2015 年 9 月, 基調講演.
- 13 セラミック結晶における転位の構造と機能, <u>中村篤智</u>, 第 3 回グリーンエネルギー材料のマルチスケール創製研究会, 2015年11月, 講演.
 ほか6件

〔図書〕(計 0件)
〔産業財産権〕
○出願状況(計 0件)
○取得状況(計 0件)
〔その他〕
ホームページ等
http://www.numse.nagoya-.ac.jp/matsunaga/
6.研究組織
(1)研究代表者
中村 篤智 (NAKAMURA, Atsutomo)
名古屋大学・大学院工学研究科・准教授

(2)研究分担者

研究者番号: 20419675

- なし
- (3)連携研究者 なし
- (4)研究協力者 なし