科学研究費助成事業

研究成果報告書

科研費

平成 2 8 年 5 月 2 6 日現在

機関番号: 12601
研究種目: 挑戦的萌芽研究
研究期間: 2014~2015
課題番号: 26630406
研究課題名(和文)メカノケミカル反応によるリグノセルロースの全可溶化
研究課題名(英文)Depolymerization of lignocellulosic biomass by mechanochemical reaction
研究代表者
高垣 敦(TAKAGAKI, Atsushi)
東京大学・工学(系)研究科(研究院)・助教
研究者番号:3 0 4 5 6 1 5 7
交付決定額(研究期間全体):(直接経費) 3,000,000円

研究成果の概要(和文):結晶性セルロースの直接分解をボールミル処理にて行った。強酸性を有する層状金属酸化物 HNbMo06を添加し、乾式ボールミル処理を行うと、すべてのセルロースが転化し、水溶性糖が72%で得られた。セルロー スのアモルファス化は迅速に進行しており、分解反応には影響がなかった。SEMおよびEDXマッピングよりセルロースと 触媒は反応10分後の時点でよく混合されており、固体触媒がセルロースに取り囲まれた様子が観測された。本反応は、 分解したオリゴ糖の逐次分解ではなく長鎖セルロースの直接分解により進行していることがわかった。生成物にはグル コース、マンノース、セロオリゴ糖の他に、アンヒドロ糖が含まれた。

研究成果の概要(英文): Direct depolymerization of crystalline cellulose into water-soluble sugars by solvent-free ball milling was examined in the presence of a strongly acidic layered metal oxide, HNbMo06, resulting in full conversion with 72% yields of water-soluble sugars. Measurements by 13C magic angle spinning nuclear magnetic resonance spectroscopy and x-ray diffraction revealed that amorphization of cellulose rapidly occurred, which did not affect the results of depolymerization. Scanning electron microscopy equipped with an energy dispersive x-ray indicated that the substrate and the catalyst were well mixed within 10 min with the catalyst becoming embedded in cellulose particles during milling. Time-course of product distribution showed that most of the resultant water-soluble sugars were produced not via successive degradation of oligosaccharides but via direct depolymerization of cellulose long chains. The products included glucose, mannose and cello-oligomers as well as anhydrosugars.

研究分野: 触媒化学

キーワード: バイオマス 固体酸 メカノケミカル セルロース

1.研究開始当初の背景

草本系、木質系バイオマスを構成するセル ロース、リグニンらの頑丈な天然高分子を、 低分子化し、可溶化させることはバイオマス の利活用において重要なプロセスである。セ ルロースの分解には、酵素法、硫酸法などが 実施されているが、前者は処理時間が長い、 基質の制限を受けるなどの問題がある。後者 は硫酸の回収、分離が一般的に困難といった 問題を抱えている。これに対し、固体触媒を 用いたセルロース分解は、これらの問題を解 決できる可能性を有しており、国内外で精力 的に研究が実施されている。

しかしながら、頑丈な構造を有する結晶性 セルロースと固体触媒との反応は、本質的に 固体 固体反応であるため困難である。その ため、ほとんどの研究では、前処理したアモ ルファスセルロース "Activated cellulose" を反応基質として使用していた。

2.研究の目的

固体触媒によるバイオマス分解は、廃棄物 が少ない、繰り返し使用が可能、短時間での 処理が可能などのポテンシャルを有してい るものの、固 - 固反応となるため反応効率の 改善が最も重要である。

そこで、本研究では、固体触媒をリグノセ ルロース系バイオマスと直接混合し、共に乾 式粉砕(メカノケミカル反応)処理をするこ とで、一度に各成分の低分子化を図ることを 目的とした。

3.研究の方法

数種の酸化物、水酸化物を用い、結晶性セ ルロース(Avicel)の乾式粉砕を行った。固体 添加物として、層状 LiNbMoO₆、HNbMoO₆、酸処 理したカオリナイト、モンモリロナイト K10、 USY ゼオライト(Si/AI = 40)、Mg-AI ハイド ロタルサイト(Mg/AI = 3)、Nb₂O₅、NbO、Ta₂O₅、 TiO₂、SnO₂、NiO、Co₃O₄、Cu₂Oを用いた。乾式 粉砕(メカノケミカル反応)は、これらの固 体粉末 0.4gを結晶性セルロース 0.4g、ジ ルコニアボール(直径 10 mm、7 個)とともに ジルコニア容器(12 mL)へ加え、遊星ボール ミル装置(pulveristte 7)を用いて行った。 回転数は 400~800rpm とした。ボールミル処 理後、分解生成物の定性・定量のために、水 を混合粉末に加え、その後 5000 rpm にて遠心 分離し、水溶性成分を未反応セルロース、固 体酸化物と分離した。水溶性糖の分析は、高 速液体クロマトグラフィー(HPLC)を用いて 行った。さらに、フーリエ変換イオンサイク ロトロン共鳴質量分析装置(FT-ICR MS)を用 いて、生成物の詳細分析を行った。反応前後 のセルロースおよび固体のキャラクタリゼ ーションを X 線回折(XRD)、固体核磁気共鳴 (Solid-State NMR)、走查型電子顕微鏡(SEM) およびエネルギー分散型 X 線分析(EDX)によ って行った。

4.研究成果

様々な酸化物、水酸化物を添加したときの セルロース分解の結果を図1に示す。 固体を 添加しない場合、分解物(水溶性糖)は得ら れなかった。固体を添加してボールミル処理 を行うことで、水溶性糖が生成した。この水 溶性糖には、単糖(グルコース、マンノース)、 セロオリゴ糖(セロビオース、セロトリオー ス、セロテトラオース、セロペンタオース、 セロヘキサオース)およびアンヒドロ糖(ア ンヒドログルコース、アンヒドロセロビオー ス)が含まれていることが HPLC によりわか った。単糖グルコースからの過分解生成物で ある 5-ヒドロキシメチルフルフラール(HMF) やレブリン酸、ギ酸の生成はほとんどなかっ た(<0.1%)。単純金属酸化物(Nb₂O₅, TiO₂, SnO₂, NiO)は活性が低かった。一方、層状構造を有 する酸処理カオリナイトやモンモチロナイ トでは水溶性糖が得られた。同じ反応条件下 では、層状 HNbMoO。が最も高い水溶性糖収率 を示した。Mg-AI ハイドロタルサイトは、層 状構造を有する固体塩基であるが、この場合 は活性が全くなかった。また、三次元構造を 有する USY ゼオライトの活性はモルデナイト と同程度であった。以上の結果から、HNbMoO。 の高い活性は、HNbMoO。が強い固体酸性と層状 構造を有するためであると考えられる。

図1.種々の固体酸化物、水酸化物を用いた メカノケミカル反応によるセルロース分解 (セルロース0.4g、固体0.4g、600rmp、4時 間)

水溶性糖の生成には、結晶性セルロースの アモルファス化が先に進行すると考えられ る。そこで固体 ¹³C NMR 測定を行い、反応初 期におけるセルロースのアモルファス化度 を測定した。図2にボールミル処理したセル ロースの ¹³C MAS NMR スペクトルを示す。粉 砕前では、5つの明瞭なシグナルが 105, 89, 75, 73, 66 ppm に観測され、それぞれ結晶セ ルロースの炭素 C1, C4, C3, C2-C5, C6 に帰 属される。他にも 85-63 ppm にかけてシグナ ルが観測されるが、これは無秩序に水素結合 した C4 および C6 の炭素に由来する。10 分後 これらのシグナルはプロードになり、また 30 分後には、C4 と C6 にあたる 89 および 66 ppm のシグナルのシフトが見られた。本反応条件 では、固体の添加なしにおいても、結晶性セ ルロースのアモルファス化は迅速に進んで いることがわかる。HNbMoO₆を添加した場合、 このセルロースの相変化は加速され、10分後 にほとんどアモルファス化されることがわ かった。

図 2 . ボールミル処理した結晶性セルロース の固体 ¹³C NMR スペクトル (A)HNbMoO₆添加 無、(B)HNbMoO₆添加有

反応時におけるセルロースと HNbMoO。の混 合状態を SEM-EDX により観測した。図3には 粉砕前のセルロース、HNbMoO。および反応1分、 5分後の混合物の SEM 像および C, Mo 元素マ ッピングの結果を示す。粉砕前、セルロース は 10~100 µ m のサイズであり、HNbMoO₆のサ イズ(0.3~3µm)よりもはるかに大きい。1 分粉砕後、小さな粒子が大きな粒子の上に付 着している像が観測されており、HNbMoO。がセ ルロースに接触したと考えらえる。反応 10 分後、このような明瞭な粒子サイズの違いは 見られなくなった。C(セルロース由来)お よび Mo(HNbMoO。由来)の EDX マッピング結果 は、これらの元素が同じ位置にあることを示 しており、両者がよく混合されたことを示し ている。

図3.セルロースと HNbMoO₆の粉砕前後の SEM 像および EDX マッピング (A)粉砕前のセル ロース (B)粉砕前の HNbMoO₆ (C)粉砕1分後 のセルロースと HNbMoO₆の混合物、(D)粉砕10 分後の混合物の SEM 像および C, Mo 元素マッ ピング

セルロース、HNbMoO₆の BET 比表面積は、そ れぞれ2および13 m² g⁻¹であった。反応1分 後、混合物の表面積は 10 m²g⁻¹であったが、 反応時間とともに表面積は急激に減少し、4 時間後表面積は 1 m²g⁻¹となった。HNbMoO₆ 混合によるセルロース分解速度は、HNbMoO₆ 添加量に比例した。このことは層状金属酸化 物の活性サイトがセルロースで囲まれてい ることを示唆している。以上より、HNbMoO₆ はボールミル処理中にセルロース粒子に包 含され、この混合粉末中でメカノケミカル反 応が進行していると考えられる。

図4にボールミル処理した混合粉末の XRD パターンを示す。反応1分後では、層状 HNbMoO。のピークに加えて、22.5°に結晶性セ ルロースのピークが観測された。この結晶性 セルロースのピークは反応 10 分後には消失 しており、¹³C NMR の結果と一致した。反応時 間とともに HNbMoO。の(002)ピークは減少し たが、(110)ピークはあまり変化がなかった。 機械的な力により、HNbMoO。の層ずれあるいは 剥離が起きたと考えられる。この(002)ピー ク強度の減少は、反応1分から 10 分後にか けて顕著であるが、それ以降の減少は緩やか であった。このことは、SEM 像で見られた混 合物の形態変化に関連すると思われる。反応 10 分後では、HNbMoO₆ はセルロースマトリッ クスに取り込まれるため、それ以降 HNbMoO。 の構造変化が大幅に抑制されたと考えられ る。

図 4 . ボールミル処理した混合粉末の XRD パ ターン

図5にメカノキャタリシスによるセルロ ース分解の経時変化を示す。水溶性糖の総収 率はボールミル時間とともに増加した。この 際に、生成物の分布に変化は見られなかった。 このことは、分解オリゴマーがさらに分解さ れなかったことを示している。つまり、得ら れた水溶性糖のほとんどは、オリゴ糖の逐次 分解により生じたのではなく、セルロースか らランダムに、直接分解されて生成したもの と考えられる。ボールミル粉砕では、衝突し た点で結合の開裂が起こるので、セルロース の部位に関わらず、ランダムに分解されたと

図5.メカノケミカル反応によるセルロース 分解の経時変化 (C1:グルコース、C1': マンノース、C2:セロビオース、C3:セロトリ オース、C4:セロテトラオース、C5:セロペン タオース、C6:セロヘキサオース、A1:アンヒ ドログルコース、A2:アンヒドロセロビオー ス)

HNbMoO₆を添加してボールミル粉砕を 800 rpm にて 24 時間行ったところ、水溶性糖収率 が 72%となった(図6)。また、このときセル ロースの転化率は 99%であった。生成物分布 は上記と同様であった。一方、同条件で、触 媒無しの場合は、水溶性糖収率は 1%であった。

図 6 HNbMoO₆添加メカノケミカル反応による セルロース分解 (セルロース 0.4 g,触媒 0.4 g、800 rpm、24 時間)

生成物の詳細な分析をフーリエ変換イオ ンサイクロトロン共鳴質量分析装置(FT-ICR MS)にて行った。結果を図7に示す。セロオ リゴマーとこれらのアンヒドロ糖の2種類 が検出された。それぞれの化合物は、グルコ ースユニット(162 Da)間隔で観測された。こ の分析方法では、C7~C12 の長いグルコース ユニットを有するオリゴマーとそれらのア ンヒドロ糖が見られた。C6以上のセロオリゴ 糖の水溶解度は非常に低いため、これらオリ ゴ糖は分岐を有するオリゴマーであると考 えられる。セルロースをボールミル処理する と分岐オリゴマーが得られるとする報告が あり、これと一致した。

図7.水溶性糖の MALDI-FT-ICR MS スペクト ル

このように、層状 HNbMoO₆を結晶性セルロ ースと混合し、ボールミル処理することで、 メカノケミカル反応によりセルロースを可 溶糖へと分解できることがわかった。可溶糖 には、セロオリゴ糖およびアンヒドロ糖であ った。また長鎖の分岐オリゴ糖も含まれてい ることが示唆された。ボールミル時間や回転 数により水溶性糖収率は向上し、最大転化率 99%、水溶性糖収率 72%を得た。

5.主な発表論文等

[雑誌論文](計 3件) <u>Atsushi Takagaki</u>, Shogo Furusato, Ryuji Kikuchi, S. Ted Oyama, "Efficient epimerization of aldoses using layered niobium molybdates", ChemSusChem, 査読 有, Vol.8, 2015, pp.3769-3772. DOI: 10.1002/cssc.201501093

<u>Atsushi Takagaki</u>, Ji Chul Jung, Shigenobu Hayashi, "Solid Lewis acid property of boehmite -AIOOH and its catalytic activity for transformation of sugars in water", RSC Advances, 査読有, Vol.4, 2014, pp.43785-43791. DOI: 10.1039/c4ra08061k

Gihoon Lee, Yeojin Jeong, <u>Atsushi</u> <u>Takagaki</u>, Ji Chul Jung, "Sonication assisted rehydration of hydrotalcite catalyst for isomerization of glucose to fructose", Journal of Molecular Catalysis A: Chemical, 査読有, Vol.393, 2014, pp.289-295.

DOI: 10.1016/j/molcata.2014.06.019

[学会発表](計 6件)

<u>Atsushi Takagaki</u>, Shigenobu Hayashi, Ryuji Kikuchi, S. Ted Oyama, "Utilization of Interlayer Spaces of Protonated Layered Transition Metal Oxides for Transformations of Biomass-derivatives", 15th ROC-Japan Joins Symposium on Catalysis, 2015 年 4 月 19~23 日、高雄国際会議中心、 高雄(台湾)

<u>高垣敦</u>、"層状遷移金属酸化物による糖類 の各種変換反応"、第2回 EnMaCh 拠点形成講 演会、2014年11月18日、熊本大学(熊本県・ 熊本市)

<u>Atsushi Takagaki</u>, Shogo Furusato, Shigenobu Hayashi, Ryuji Kikuchi, S. Ted Oyama, "Decomposition of crystalline cellulose by ball-milling in the presence of layered niobium molybdate solid acid", 248th American Chemical Society National Meeting & Exposition, 2014 年 8 月 10 日、 Moscone Center、サンフランシスコ(米国)

高垣敦、古里省吾、菊地隆司、S. Ted Oyama、 "層状金属酸化物固体酸を用いたメカノケ ミカル反応によるセルロース分解"、第23回 日本エネルギー学会大会、2014年7月19日、 九州大学(福岡県・福岡市)

<u>Atsushi Takagaki</u>, Shogo Furusato, Shigenobu Hayashi, Ryuji Kikuchi, S. Ted Oyama, "Mechanochemical Depolymerization of Crystalline Cellulose Using a Layered Metal Oxide Solid Acid", TOCAT7 Kyoto 2014, 2014年6月2日、京都 テルサ(京都府・京都市)

<u>高垣敦</u>、古里省吾、菊地隆司、S. Ted Oyama、 "固体酸との混合粉砕によるセルロース分 解反応"、第3回 JACI/GSC シンポジウム、2014 年5月23日、東京国際フォーラム(東京都・ 千代田区)

〔図書〕(計 0件)

```
〔 産業財産権 〕
出願状況(計 0件)
取得状況(計 0件)
```

[その他]

6.研究組織
(1)研究代表者
高垣 敦(TAKAGAKI, Atsushi)
東京大学・大学院工学系研究科・助教
研究者番号:30456157