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We have developed new organoiron catalytic species for efficient, selective,

and versatile C(sp2)-H and C(sp3)-H bond functionalization. For C(sp2)-H activation, we used
stabilizing ligands and a mild organometallic reagent in order to prevent reduction of iron to a
highly reactive and difficult to control low-valent state, and we achieved a high-valent organoiron
species that catalyzes the reaction of various carboxamides with organometallic reagents or with
electrophiles. We also developed a triphosphine ligand that enables the iron-catalyzed activation of
a variety of weakly coordinating substrates such as ketones or carboxylic acids.

For the the cleavage of a C(sp3)-H bond, we used the dual radical/organometallic reactivity of
organoiron to achieve the remote of functionalization of the gamma C-H bond in alkylarenes with high
regioselectivity.
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Transition-metal-catalyzed C-H bond
activation followed by the creation of a new
C—C or C-heteroatom bond has received much
attention recently, because it enables a
streamlined approach to the synthesis of
complex organic molecules. To date, most of
these reactions rely on second- or third-row
transition metals (most notably Pd, Rh, Ru).
There is much interest in the development of
sustainable catalysis using first-row transition
metals such as iron, which is abundant,
inexpensive, and non-toxic. However, at the
start of this project, the reported iron catalytic
systems for C-H activation relied on a
low-valent iron species generated in situ by the
reduction of an iron salt with a Grignard or
diorganozinc reagent; the reactivity of this
species was difficult to control, and fast
deactivation and side reactions resulted in low
catalyst efficiency and poor versatility.
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The purpose of the present research is to
develop a new organoiron catalytic system and
utilize it for efficient, selective, and versatile
C(sp>)-H and C(sp>)-H bond functionalization.
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(1) Development of a high-valent organoiron
species for catalytic C(sp’)—H activation

In order to solve the aforementioned problems
of low-valent organoiron catalysis, I devised
the strategy in Scheme 1: the use of
stabilizing ligands and a mild organometallic
reagent prevents reduction of iron to the
difficult to control low-valent state, and a
high-valent organoiron species catalyzes C—H

activation  with  higher efficiency and
versatility.
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(2) Dual radical/organometallic reactivity of
organoiron for catalytic C(sp’)—H activation
Because the cleavage of a C(sp)-H bond by an
organometallic  complex is difficult, 1
envisioned a dual radical/organometallic
strategy (Scheme 2): an organoiron species
cleaves a C(sp’)-H bond in a radical manner
under mild conditions, followed by creation of
a new bond in an organometallic manner.
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(1) Oxidative
aromatic amides
In order to prevent reduction and achieve the
high-valent organoiron species described in
Scheme 1, we found that the use of bidentate
directing group, a diphosphine ligand, and a
mild organoborate reagent is essential. Under
these reaction conditions, a large variety of
(hetero)arene-, alkene, and alkanecarboxamides
reacted with aryl, alkenyl, and alkyl borates in
high yield (Scheme 3, F&&EKFH3C 3, 11). The
use of a zinc additive was essential to promote
the difficult boron/iron transmetalation. Several
mechanistic  experiments  confirmed the

intermediacy of organoiron(III) species.
Scheme 3.
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We also found that by using an even milder
organoaluminum reagent, the methylation of
carboxamides proceeded with high catalyst
efficiency, surpassing precious metal catalysis

(Scheme 4, 5 C 9).
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A similar strategy was used for the

iron-catalyzed alkylation of carboxamides with
alkylzinc halides, where B-hydride elimination
of the alkyliron intermediate was largely
suppressed (FEZM 3L 10). These studies also
inspired the development of a
manganese-catalyzed C—H methylation reaction

(FEFKGm L 4).

(2) Reaction
electrophiles
By using the stabilizing ligands described in
Scheme 1, the iron intermediate generated after
C-H cleavage is stable enough to be reacted
with electrophiles (Scheme 5). Thus, we
developed the iron-catalyzed reaction of
carboxamides with alkyl tosylates and halides
(R 3C 12), and the cyclative reaction with
alkynes (F 2w 3 1, 8).

of aromatic amides with
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(3) C-H activation of weakly-coordinating
aromatic substrates

The problem of the strategy depicted in Scheme
1 is the necessary use of a bidentate directing
group, limiting the substrates to
N-(8-quinolyl)carboxamides. In order to
achieve a more general reaction, we designed a
triphosphine  ligand, which enabled the
iron-catalyzed activation of a variety of weakly
coordinating substrates such as ketones,
carboxylic acids, esters, and amides (Scheme 6,
FELTm L T).

Scheme 6.

0, AlMe, o :
—OH cat. Fe(acac)y/ OH ! @\
H : Ph,

H LS

T S e O R
ca’ c | @

(pin)B THF/DME, 70°C  (pin)B | MeN-TP

89% (1.1 g)
Isolated by recrystallization

Me O Me

98% 68%

(4) Remote functionalization of a C(sp’)—H
bond

Regioselective functionalization of a
non-activated aliphatic C-H bond is a
challenging task, because differentiation of
C-H bonds having similar electronic and steric
environments is very difficult. Based on the
strategy depicted in Scheme 2, we achieved the
iron-catalyzed phenylation of a remote y-C—H
bond in alkylarenes with high regioselectivity
(Scheme 7, ¥ &£ # X 2). Mechanistic
experiments suggested that an organoiron
species transfers one electron to the aryl halide,
and the resulting aryliron intermediate reacts in
a radical manner and undergoes 1,5-hydrogen
transfer to selectively cleave the y-C—H bond.

Scheme 7.
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