科学研究費助成事業 研究成果報告書

平成 28年 6月 8日現在

機関番号: 32641 研究種目: 若手研究(B) 研究期間: 2014~2015

課題番号: 26800180

研究課題名(和文)巨大な正方晶歪みのもたらす特異的な物性の探索

研究課題名(英文) Investigation of the exotic properties originated from a large tetragonal

distrotion

研究代表者

岡 研吾 (Oka, Kengo)

中央大学・理工学部・助教

研究者番号:80602044

交付決定額(研究期間全体):(直接経費) 3,000,000円

研究成果の概要(和文):本研究では正方晶ペロブスカイトPbTi03をベースとし、PbとTiを含む酸フッ化物の研究を行った。結果、新物質Pb2Ti409F2とPb2Ti205.4F1.2を発見することに成功した。精密構造解析を行った結果、Pb2Ti409F2中で0/Fのアニオン秩序配列が存在することを実験的に明らかにした。また、Pb2Ti205.4F1.2においては、これがパイロクロア型構造を持つことを確かめ、さらに対称中心のある構造にも関わらず、非常に巨大な誘電率を示すことを発見した。これは結晶中の局所的な歪みを反映しているものだと考えられる。

研究成果の概要(英文): New oxyfluoride system which contains Pb and Ti was invesitigated based on the tetragonal perovskite PbTiO3. Our study found novel oxyfluorides, Pb2Ti4O9F2とPb2Ti2O5.4F1.2. Bond valence sum calculations and determining electron density distribution by the maximum entropy method reveled presence of O/F anion order in Pb2Ti4O9F2. Pb2Ti2O5.4F1.2 was a pyrochlore with centrosymmetric space group, however, exhibited an unusual large dielectric constant. Presence of local distortion may be the origin of the high dielectric constant.

研究分野: 固体化学

キーワード: 精密構造解析 放射光粉末X線回折 リートベルト解析 酸フッ化物

1.研究開始当初の背景

結晶構造と物性の間には密接な相関が存 在し、両者の相関を明らかにすることが無機 固体化学の一つの大きなテーマとなってい る。その中でも、ABO3の組成式で表される ペロブスカイト構造を持つ酸化物は、高温超 伝導や超巨大磁気抵抗効果の舞台になるな ど、その特異的かつ興味深い物性で常に多く の注目を浴びてきた。数多くのペロブスカイ ト酸化物が報告されているが、その中でも c 軸方向に電気分極を持つ正方晶ペロブスカ イト(空間群:P4mm)の報告例は少ない。常圧 で合成可能な正方晶ペロブスカイトは、 BaTiO3,PbTiO3, KNbO3(高温相)に限られて いる。しかし、数万気圧の高圧下での合成を 行うことによって、さらにより多くの正方晶 ペロブスカイトを安定化することが可能で ある。研究代表者は、過去の研究において、 高圧合成法で合成される正方晶ペロブスカ イト酸化物 PbVO3・BiCoO3 に注目、その物 性を明らかにしてきた。両者は、Pb2+・Bi3+ の持つ 6s² 孤立電子対の効果により、PbTiO₃ と同様の対称中心のない正方晶の結晶構造 をとると考えられる。しかし、PbTiO $_3$ の c軸長とa軸長の比で表される正方晶歪みの大 きさ da が 1.07 であるのに対し、PbVO3 は c/a = 1.23、BiCoO3 は c/a = 1.27 と特異的に 大きい。申請者は、PbVO3の磁性研究より、 PbVO3・BiCoO3 の巨大正方晶歪みは、対称 中心を持たない正方晶構造中で、 $V^{4+}(d^1)$ およ び Co3+(d6:高スピン)の d 電子が縮退の解 けた t2g 軌道を占有することでエネルギー利 得を得るため安定化されていることを明ら かにしてきた。現在発見されている ABO3 の 組成で大きな正方晶歪みを持つペロブスカ イト酸化物は、この二つのみである。

2.研究の目的

高圧合成法で合成されるペロブスカイト酸化物 $PbVO_3$, $BiCoO_3$ は、正方晶の c 軸と a 軸の長さの比が c/a=1.2 を超える大きく歪んだ非常に特異的な結晶構造を有している。これらの物質は、巨大な正方晶歪みの存在により、低次元磁性やスピン状態転移、巨大な体積収縮を伴う圧力下での構造相転移な巨大な興味深い現象を示す。しかし、 $PbVO_3$, $BiCoO_3$ は巨大な正方晶歪みを有する興味深い物質であるものの、合成に高圧条件を必よい物質であるものの、合成に高圧条件でで、本研究では、常圧で合成可能な $PbTiO_3$ をべースに、元素置換により正方晶歪みを巨大化することを試みた。

3.研究の方法

PbTiO₃をベースに正方晶歪みを巨大化させるアプローチの一つとして、アニオンサイトの複合化が挙げられる。アニオンサイトを酸素とそれ以外のアニオンで複合化し、異なる金属アニオン結合生み出し、結晶の対称性を下げることによって、正方晶歪みが大きくなると期待した。

試料合成は、PbO,PbF2,TiO2を原料とした

固相反応法で行った。これらの粉末を秤量混合したのち、ペレット成形し、パイレックス管に真空封入した。封入管を電気炉で熱処理することにより、試料を得た。

得られた試料の結晶構造は、SPring-8で行った放射光X線回折パターンを元に決定した。回折パターンのリートベルト解析を行い、化粧構造を精密化した。得られたパラメーターを用い、ボンドバレンスサム(BVS)法で各サイトの電荷を評価し、その結果で異種アニオンの秩序配列状態を調べた。また、精密化した構造因子を元にマキシマムエントロピー法(MEM)を用いて、電子密度分布の可視化を行った。電子密度分布を可視化することにより、金属イオンとアニオンの結合状態が明らかになり、その違いからアニオン秩序配列の存在を明らかにした。

4.研究成果

$4 \cdot 1 \cdot Pb_2Ti_4O_9F_2$

まず、 $PbTiO_3$ の酸素サイトをフッ素で置換した $PbTiO_{3.x}F_x$ の合成を試みた。しかし、常圧での合成ではほとんどフッ素による置換は出来ず、巨大正方晶相を常圧で得るという目的は達成できなかった。

次に Pb と Ti の金属比を 1:1 からずらした 試料の合成を行った。 Pb²+の $6s^2$ 孤立電子対と Ti⁴+の二次のヤーンテラー活性の存在から、 局所的に歪んだ配位状態を期待した。合成を行った結果、 Pb₂Ti $_4$ O $_9$ F₂ という組成で単相試料が得られた。 構造解析を行った結果、この試料は Bi₂Ti $_4$ O $_1$ 1 の高温常誘電相と同じ結晶構造であるとわかった。 これらの物質と同じ構造をとるものは、 この二種類以外の報告がなこの Pb²+および Bi³+の $6s^2$ 孤立電子対と Ti⁴+の二次のヤーンテラー効果が結晶構造に大きく Pb²+および Bi³+の $6s^2$ 孤立電子対と Ti⁴+の二次のヤーンテラー効果が結晶構造に大きる SPring-8 BL02B2 ビームラインで放射光粉末 X 線回折 に放射光 X 線回折パターンとリートベルト 解析

の結果を示す。 $Bi_2Ti_4O_{11}$ の高温常誘電相を構造モデルとして、解析は良好に収束した。しかし、X 線および中性子回折において、 O^2 と F はほぼ等しい散乱能を持っており、リートベルト解析において、これらを区別すること

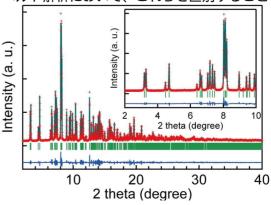


Figure 1 Pb₂Ti₄O₉F₂の室温での放射光 X 線回折パタ

ーンとリートベルト解析結果。

は出来ない。そこで BVS による各サイトの価 数の見積もりと、MEM による電子密度分布の 可視化が力を発揮する。ポーリングの第2則 より、各結晶学的サイトの BVS は、そこを占 有するイオンの価数に相当する値を示す。そ こで、精密化した構造パラメーターから BVS を計算したところ、06/F6 サイトの値だけ極 端に小さいことがわかった。この結果は、F⁻ イオンが 06/F6 サイトのみを占有する、0/F のアニオン秩序配列が存在していることを 意味している。さらに MEM で電子密度分布の 可視化を行った。電子密度分布を可視化する ことにより、結合状態を調べることが出来る。 Figure 2 に(010)面における電子密度分布を 示す。ここで、06/F6 サイトの電子密度は孤 立した形をしており、共有結合性が低いこと がわかる。つまり、06/F6 サイトを占有して いるのは F イオンであり、F イオンは 02 イオ ンよりも電気陰性度が高いため、共有結合性 が低くなっていると理解出来る。酸フッ化物 においてアニオンの秩序状態を明らかにす るのは難しい問題であったが、本研究ではそ れを実験的に明らかに観測することに成功 した。

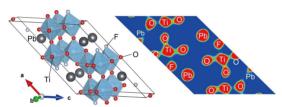


Figure $2 \text{ Pb}_2\text{Ti}_4\text{O}_9\text{F}_2$ の結晶構造(左)と(001)面における電子密度分布(右)。 Ti との結合状態の違いから、 O^2 と F-を区別することが出来た。

Pb₂Ti₄O₀F₂は Bi₂Ti₄O₁の高温常誘電相と同じ結晶構造であることから、低温で構造相転移をし(反)強誘電相となることが期待される。しかし、10 K までの誘電率の温度変化には、転移を示す異常は見られなかった。残念ながら、期待していた構造歪みに由来する特異的な物性は見られなかったが、アニオン複合化により相転移挙動に大きな変化がもたらされることを確認したのは、今後に繋がる知見である。

4 . 2 . Pb₂Ti₂O_{5.4}F_{1.2}パイロクロア

次に PbTiO $_{3-x}F_x$ ではなく、Pb $^{2+}$, Ti $^{4+}$ の価数を保ったまま、O/F の比を変えて新物質探索を行った。結果、Pb $_2$ Ti $_2$ O $_{5-4}F_{1.2}$ (PbTiO $_2$, F $_{0.6}$)という組成でパイロクロアの単相を得ることに成功した。SPring-8 BL02B2 で放射光粉末 X 線回折を行った結果、 A_2 B2 X_6 X'で表されるパイロクロアの一般式において、X'サイトに欠損が生じていることがわかった。また、この物質の誘電率を測定したところ、他の酸大なパイロクロアでは見られないほどの巨大な誘電率 (~800)を示すことがわかった (Fig. 3)。パイロクロアは対称中心のある空間群であるため、バルクとしては強誘電体ではあり

得ないが、酸素とフッ素を複合化したことにより、結晶構造中に局所的な歪みが生じたため、このような高い誘電率を示したと推察される。今後はより詳細な構造解析を行い、巨大誘電率の起源を明らかにしていく。

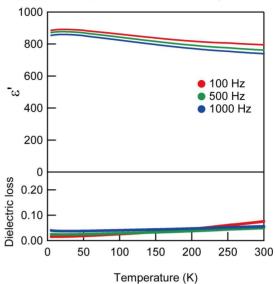


Figure $3 \text{ Pb}_2\text{Ti}_2\text{O}_{5.4}\text{F}_{1.2}$ の誘電率温度変化。高い誘電率と低い誘電損失の値を示した。また、誘電率の大きさは温度に対してほとんど変化しなかった。

5. 主な発表論文等

(研究代表者、研究分担者及び連携研究者に は下線)

[雑誌論文](計6件)

- 10.1021/acs.inorgchem.5b01496
- 2. M. Azuma, <u>K. Oka</u>, K. Nabetani、Negative thermal expansion induced by intermetallic charge transfer、Science and Technology of Advanced Materials、査読有、Vol.16 、 2015 、 34904 、 DOI: 10.1088/1468-6996/16/3/034904
- 3. R. Yu, H. Hojo, <u>K. Oka</u>, T. Watanuki, A. Machida, K. Shimizu, K. Nakano and M. Azuma、 New PbTiO $_3$ -Type Giant Tetragonal Compound Bi $_2$ ZnVO $_6$ and Its Stability under Pressure、 Chemistry of Materials、 査読有、vol. 27, 2015, pp.2012-2017 、 DOI: 10.1021/cm504133e
- 4. R. Yu, <u>K. Oka</u>, M. Azuma 他 (22 名中 6 番目)、Melting of Pb Charge Glass and Simultaneous Pb-Cr Charge Transfer in PbCrO $_3$ as the Origin of Volume Collapse、Journal of the American Chemical Society、查読有、vol. 137、2015、pp. 12719-12728、DOI: 10.1021/jacs.5b08216
- 5. K. Nabetani, Y. Muramatsu, <u>K. Oka</u>, K.

Nakano, H. Hojo, M. Mizumaki, A. Agui, Y. Higo, N. Hayashi, M. Takano and M. Azuma、Suppression of temperature hysteresis in negative thermal expansion compound $BiNi_{1-x}Fe_xO_3$ and zero-thermal expansion composite、Applied Physics Letters、査読有、vol. 106、2015、61912、DOI:10.1063/1.4908258

6. S. Pyon, K. Kudo, J. Matsumura, H. Ishii, G. Matsuo, M. Nohara, H. Hojo, <u>K.Oka</u>, M. Azuma, V. O. Garlea, K. Kodama and S. Shamoto 、 Superconductivity in Noncentrosymmetric Iridium Silicide Li₂IrSi₃、Journal of the Physical Society of Japan、查読有、vol. 83、2014、93706、DOI: 10.7566/JPSJ.83.093706

〔学会発表〕(計7件)

- 1 . <u>岡研吾</u>・大石克嘉・ 北條元・東正樹、 日本セラミックス協会 2016 年会、2016 年 03 月 14 日~2016 年 03 月 16 日、早稲田大 学
- 2. <u>Kengo Oka</u>, Katsuyoshi Oh-ishi、Pacifichem 2015 (国際学会), 2015年12月15日~2015年12月20日、Hawaii convention center
- 3.<u>岡 研吾</u>・山内 徹・上床 美也・東 正樹・大石 克嘉、第56回高圧討論会、2015年11月10日~2015年11月12日、JMSアステールプラザ
- 4. <u>Kengo Oka</u>, Katsuyoshi Oh-ishi、STAC9, TOEO-9 (国際学会) 2015年10月19日~ 2015年10月21日、Tsukuba International Congress Center
- 5. <u>岡研吾</u>・大石克嘉、日本セラミックス協会第 28 回秋季シンポジウム、2015 年 09 月 16 日~2015 年 09 月 18 日、富山大学
- 6. <u>岡研吾</u>、大石克嘉、日本セラミックス協会 2015 年会、2015 年 03 月 18 日 ~ 2015 年 03 月 20 日、岡山大学
- 7. <u>岡研吾</u>,北條元,深谷亮,成瀬卓,沖本洋一,東正樹,綿貫徹, KIM Hyunjeong, 町田晃彦,榊浩司、大石克嘉、第 55 回高圧討論会、2014年11月24日(徳島大学)

[図書](計0件)

〔産業財産権〕 出願状況(計0件)

名称: 発明者: 権利者: 種類: 番号: 出願年月日:

出願年月日: 国内外の別: 取得状況(計0件)

名称: 発明者: 権利者: 種類: 番号: 取得年月日: 国内外の別:

〔その他〕 ホームページ等

6.研究組織

(1)研究代表者 岡 研吾 (OKA, Kengo) 中央大学・理工学部・助教 研究者番号:80602044