科学研究費助成事業

研究成果報告書

研究成果の概要(和文):理論的・計算科学的な手法から,環境低負荷な熱電半導体であるMg2Siにおける「高 い熱電性能を引き出すキャリアチューニング」と「高温で安定なP型伝導性」の実現にむけて,理論予測を行っ た.主な成果として、Mg2Siの電子状態解析に向けた理論解析の枠組みの検討(複数の計算手法による電子状態 の比較)、Mg2Siの高性能化、とくに熱起電力の向上にむけた電子密度の最適化、安定なP型伝導性を実現する不 純物ドーパントの探索と新しいタイプのドーパントの提案、系の輸送特性に対する格子欠陥の影響調査といった テーマに取り組み、実験的手法から得ることが難しい電子状態やキャリアの輸送特性について新たな知見を得 た。

研究成果の概要(英文):We have theoretically investigated impurity doping effects on the structural, electronic, and thermoelectric properties of Mg2Si in order to provide guidelines for improving the energy conversion efficiency and the stability of the system. We first examined the validity of first principles calculation codes by comparing their calculation results. We next discussed the stability of impurity-doped systems by the formation energy calculation. As a result, Sb is a stable n-type dopant; in contrast, Ag-doped systems have comparable formation energies for the Mg, Si, and interstitial sites, which accounts for the instability in the conductivity of Ag-doped Mg2Si. Furthermore, F and Cl act as p-type dopants when inserted into the cell. We then obtained the doping concentrations to provide the maximum thermoelectric power. We also investigated crystal defects: vacancies of Mg or Si, and the insertion of extra atoms into crystals, to elucidate their influence on the carrier transport of Mg2Si.

研究分野:物性理論

キーワード:物性理論 半導体物性 再生可能エネルギー

кЕ

1. 研究開始当初の背景

未利用エネルギーを回収し電気エネルギ ーに変換するエネルギーハーベスト(環境発 電)技術の一つ,熱電変換の研究を行った. 近年,エネルギー資源枯渇および環境汚染の 問題が世界規模で加速するなか,廃熱を利用 して発電する熱電変換技術の本格的な導入 が望まれる.しかし,既存の主要な熱電材料 は,BiやTe,Pb,Seなど重金属を含むことや, 毒性や資源の希少性のため,実用面で問題が あった.そのため,近年厳しさを増す環境規 制に対応し,資源量やコスト性に優れた熱電 材料の開発が喫緊の課題であり,環境低負荷 な熱電材料が注目を集めている.

熱電発電性能の評価には、一般に無次元性 能指数 $ZT=S^2\sigma/\kappa$ (S: ゼーベック係数、 σ : 電 気伝導率、 κ : 熱伝導率、T: 絶対温度)が用い られる. この式が表すように、ゼーベック係 数と電気伝導率は大きく、熱伝導率は小さい 材料が高い熱電性能を有する. 従来、エネル ギー変換効率 10%に相当する ZT=1.0 が実用 化の目安として掲げられていたが、研究開始 時には目標値が ZT=1.5 にまで引き上げられ つつあった.

マグネシウムシリサイド(Mg₂Si)は資源 豊富な元素で構成され,無毒,軽量,安価と いった特長をもつ.さらに,自動車排熱の温 度域(600~800 K)で高い熱電性能を示すこ とから,車載用熱電材料として有望視されて いる.研究開始時には,Mg₂SiにN型不純物 を添加した粉末焼結体において無次元性能 指数 ZT~1 が達成されていた⁽¹⁾.しかし,Mg₂Si を用いた熱電デバイスの実用化と幅広い普 及のためにはさらなる高効率化が求められ ており,これを目指して不純物ドーピングに よる材料開発が行われてきた.本研究では, 理論研究の立場からMg₂Siに適した不純物元 素種と添加濃度を予測することを目的に,第 一原理計算による理論解析を行った.

また,熱電素子の実用化のためには,当然, モジュールを作製しなければならない.現在 主流の熱電変換モジュールは,N型/P型両極 の半導体で構成される π 型モジュールである. しかしP型Mg₂Siは熱電性能と高温安定性の 点でN型素子に劣っており,Mg₂Siを用いた π 型熱電変換モジュール製作においては,P型 材料としてマンガンシリサイド系やテトラ ヘロライト系と組み合わせたモジュールが 多い.もし今後,高いエネルギー変換効率と 耐久性をもつP型Mg₂Siが実現できれば,同 じ母材からなるN型・P型Mg₂Siを組み合わ せることで素子性能を最大限に発揮するモ ジュールが実現できると期待される.本研究 ではこの問題にも取り組んだ.

4. 研究の目的

高い熱電変換効率を示し、かつ環境低負荷 な熱電材料の実現に向けて、材料の設計指針 を得るため、第一原理計算による理論研究に 取り組んだ.環境低負荷な熱電半導体である Mg_2Si に着目し、不純物ドーピングにより従来よりも高い熱電性能を得るため、代表的な N型ドーパント(Al, Sb)の安定性の評価と 熱起電力(Seebeck 係数)を最大化する添加濃度の予測を行った.次に、安定な P型伝導性を 実現するため、実験で高温不安定性が報告されている Agドープ系について、伝導性が高 温でP型からN型に変化する原因について調 査した.さらに、新しい P型ドーパントを探 索するため、複数の不純物原子について、形 成エネルギー計算から安定性を評価した.

研究の方法

(1) 不純物ドープ系と Supercell 法

Mg₂Si 結晶は図 1 に示すような空間群 Fm-3mに属する閃亜鉛鉱構造を持つ.本研究 では,不純物および格子欠陥の占有サイトと して,図2に示す Mg または Si 置換,4b サイ トへの格子間侵入を考えた.

計算機上で不純物ドープ系を扱う方法と して,複数の unit cell で構成される supercell を用いた. Supercell の概念図を図 3 に示す. 実験で用いられる不純物濃度は約1%以下で あるが,計算コストの都合上,2×2×2 super cell (Mg 原子 64 個, Si 原子 32 個を含む)を 用い,不純物の添加濃度としては 1.04% (96 原子中に 1 個の不純物)以上の系を扱った.

(2) 擬ポテンシャル法による格子緩和

Supercell 法では多くの電子の状態を扱うため、しばしば計算コストが問題になる.そこで、計算速度が速い擬ポテンシャル法に基づく Quantum Espresso コードを用いた.

まず,系の安定構造を得るため,各原子間 に働く力から原子の安定位置を決定する格 子緩和計算を行った.ここで,GGA 汎関数に よるノルム保存型擬ポテンシャルを用い,エ ネルギーカットオフを 60 Ry, k 点の分割数を $(k_x, k_y, k_z) = (8, 8, 8)$ とし,自己無撞着計算の 収束閾値は系の全エネルギー= 10^5 Ry,原子 に働く力の各成分= 10^4 Ry/Bohr とした.格子 緩和計算には BFGS 準ニュートン法を用いた.

Super cell

Unit cell

-

図 3. Supercell 法

(3) 不純物ドープ系の形成エネルギー

擬ポテンシャル法に基づく格子緩和計算 から求めた安定構造に対し,形成エネルギー Δ*E*を次のように評価した:

 $\Delta E(\mathrm{Mg}_{2,\xi}\mathrm{Si}:\mathrm{A}_{\xi}) = E(\mathrm{Mg}_{2,\xi}\mathrm{Si}\mathrm{A}_{\xi})$

+ $\xi E(Mg) - E(Mg,Si)-\xi E(A)$: Mg 置換

 $\Delta E(\mathrm{Mg}_{2}\mathrm{Si}_{1-\xi}:\mathrm{A}_{\xi})=E(\mathrm{Mg}_{2}\mathrm{Si}_{1-\xi}\mathrm{A}_{\xi})$

+ $\xi E(Si) - E(Mg_2Si) - \xi E(A)$: Si 置換

$$\Delta E(Mg_{2}Si:A_{\xi}) = E(Mg_{2}SiA_{\xi}) - E(Mg_{2}Si)$$

ここで, E は系の全エネルギー, A は不純物, $\boldsymbol{\xi}$ はモル数である. ΔE は不純物添加系を作る のに必要なエネルギーを表すので, ΔE が小さ いほど系の安定性が高いと言える.

(4) 熱起電力(Seebeck 係数)

不純物ドープ系の安定構造を基に熱電特 性を評価した.計算には全電子状態計算プロ グラム ABCAP を用いた.ABCAP は full potential linearized augmented planewave (FLAPW)法に基づく第一原理計算コードで ある.まず,前節までに述べた擬ポテンシャ ル法による格子緩和計算から最安定な不純 物サイトを求め,次にその安定構造に対して より高精度な FLAPW 法に基づく電子状態計 算を ABCAP により行う.その後,得られた 電子状態を基に Boltzmann 輸送方程式から Seebeck 係数を計算した.尚,全ての計算に おいて緩和時間近似を用いた.

フェルミエネルギー付近のバンド構造に 対する不純物原子の影響が小さい場合には, rigid band 近似を用いることができる. rigid band 近似とは, pure 結晶の電子状態を仮定 して,キャリアドーピングの影響をフェルミ エネルギーの変化だけで表す方法である.本 研究でもこの近似のもと熱電計算を行った.

4. 研究成果

(1) N型不純物ドープ系の熱電特性

計算手法の妥当性の検討

不純物ドープ材料の物性予測を行う前に, Mg₂Siの典型的な N 型不純物である Al と Sb を含む系を用いて,計算手法の妥当性を調査 した.

まず、これらを添加した系について、複数 の計算コード(前述した Quantum Espresso, ABCAP と、KKR グリーン関数法に基づく Machikaneyama)により構造緩和計算を行っ た. 各手法から得られた Al ドープ系の安定 構造における格子定数を図4に示す. 図4か ら,絶対値は GGA, LDA の違いに由来して 異なっているが,格子定数の Al 濃度依存性 は計算手法の違いによらず同等である.Sbド ープ系でも同様の結果が得られた. さらに, 形成エネルギーにおいても計算コードによ る違いは小さく、全電子計算である ABCAP や Machikaneyama と同等の結果が、擬ポテン シャル法に基づく Quantum Espresso により得 られた.以上より,擬ポテンシャル法は不純 物ドープ Mg₂Siの計算において高速かつ高精 度な手法として有用であると考えられる.

<u>N 型ドーパント(AI, Sb)の安定性</u>

Al, Sb をそれぞれ含む supercell について, Quantum Espresso により格子緩和計算を行っ た.その結果から 3-3 節で述べた形成エネル ギーを評価した結果を図 5 に示す.Al は Mg 置換, Sb は Si 置換で最も低い形成エネルギ ーを示した.また,状態密度から,これらの 系はN型伝導性を示し,この結果は実験によ る知見と一致する.さらに,Sb は Si 置換で 負の形成エネルギー値をとるため,Sb は極め て安定な N型ドーパントであると結論した.

図 6. Pure Mg₂Si のバンド構造

最大熱起電力を与える不純物濃度

前節の結果から安定な N 型ドーパントで あると示された Sbを含む系について ABCAP により全電子計算を行い,その結果を基に Seebeck 係数を評価した. Supercell 法では不 純物濃度が低いほど計算負荷が増加する事か ら,実際のドープ量(~1at.%以下)を定量的に 扱うことは困難である.そこで,3-4 節で述べた rigid band 近似を導入し,図6に示す pure Mg₂Si のバンド構造を基に不純物ドープ系の輸送特性 を計算した.Sb 0.5at.%ドープ系について,理論 と実験の結果を比較したところ,図7 に示すよう に,理論的に求めた Seebeck 係数は過去に例 がないほど良く実験結果を再現した.

次に、Sb, Al の様々な添加濃度について計算した結果を図8に示す.ここで、図2に示した各不純物サイトからの寄与を考慮するため、サイトの占有率を形成エネルギー値からBoltzmann分布を用いて与え、その値によってキャリア密度を決定した.図8の結果から、Sb濃度0.15 at.%のとき最大のSeebeck係数が得られるが、一方でAl ドープ系ではグラフピークが低温度側にあるため、使用温度によって、最大の熱電性能を与える添加濃度が異なる可能性が示された.

(2) 安定な P 型伝導性のための理論予測

N型・P型 Mg₂Si の熱電特性比較

1節で述べた通り, P型 Mg₂Si 材料は高温 安定性に課題がある.もし高温においても P 型伝導性を保つことができれば,どのような 熱電特性が得られるのかを,rigid band モデル を用いて調査した.結果を図9に示す.ここ で,キャリア(電子または正孔)濃度は,低 温側でゼーベック係数が高い側から 10ⁿ cm⁻³ (n=17, 18, ..., 22)である.図9より,Mg₂Si において正孔濃度の制御が可能になれば,N 型 Mg₂Si と同等の熱電特性をもつP型材料が 実現でき,高性能な熱電発電モジュールを実 現する上で有益であると考えられる.

Ag ドープ系の高温不安定性の原因

Mg₂Siの代表的なP型ドーパントであるAg は Mg 置換によりアクセプタとなる.しかし, 図 10 に示す形成エネルギーから, Mg 置換と 他のサイト占有時の形成エネルギーに大き な差は見られない.また,図 11 の状態密度 から,Mg サイトで P型,Si,4b サイトで N 型を示すことが分かる.以上の結果から,Ag ドープ系では小さなエネルギー差で Ag 原子 が異なるサイトを占有し,その結果,伝導電 子とホールが同時に放出される可能性が示 唆される.この結果は,実験的に観測された 高温における伝導性の変化 (P型→N型)は, 熱エネルギーにより Ag 原子がサイト間を移 動した為である可能性を示している.

図 9. N型(左)および P型(右) Mg₂Si に おける Seebeck 係数のキャリア濃度依存性

図 10. Ag 添加系の形成エネルギー

図 11. Ag ドープ系の状態密度: (a) Mg 置換, (b) Si 置換, (c) 4b サイト侵入

新しいP型ドーパントの探索

前節の議論から,安定な P型 Mg₂Si を得る には,不純物の P型サイトの形成エネルギー が他のサイトよりも小さいことが望ましい. この観点から他の不純物原子についても調 査を行った.図12の第 I 群(Li, Na, K)は 1 価の元素であり, Mg 置換により正孔を放出 する.同様に,第 II 群(B, Ga)は Si 置換で P型不純物となる.また,第 III 群(S, Se, F, Cl) は電気陰性度が高いことから, 4b サイトに侵 入すれば,周囲の電子を引きつけて正孔を放 出すると期待される.

これらの不純物のうち, S と Se 以外は P 型サイトで最も低い形成エネルギーを示した.特に, Li と Cl は N 型不純物(Al, Sb)と同等の形成エネルギーを持つことから, Mg₂Si の合成温度で添加できると予想される.しかし,ほとんどの不純物は P 型サイトと N 型サイトにおいて同等の形成エネルギーを持つため,前述した Ag ドープ系と同様に電子と正孔の同時生成が懸念される.また,特筆すべき結果として, F と Cl は格子間侵入が最も安定であり,このとき P 型伝導性を示すことが分かった.従来の Mg₂Si 系材料の開発においては,主に原子置換によるドーパントが用いられてきたが,本研究では侵入型の P 型ドーパントを初めて提案した.

格子欠陥の影響

前節で述べたように、形成エネルギーの計算からは Ag やその他の P 型不純物が異なる サイトを同時に占有する可能性が示唆され、 これによる P 型伝導性の不安定さが懸念され る.一方、実験研究からは、格子欠陥も Mg₂Si のキャリア伝導に影響を及ぼすことが示さ れている⁽²⁾.そこで我々は、格子欠陥と不純 物原子を同時に含む系についても考察した.

格子欠陥のタイプとして,図 13 に示す 4 つの場合(4b サイトへの Mg, Si 原子の格子 間侵入と, Mg サイト, Si サイトの空孔)を 考える.これらの欠陥を含む系の状態密度は 図 14 のようになり, Mg 空孔のみが P 型, 他 の3つはN型伝導性をもたらす.また,格子 欠陥の形成エネルギーを, Mg 過剰, Si 過剰 のそれぞれの条件下で求めた結果を図 15 に 示す.図 15 から、実験で観測されているよ うな低い欠陥濃度(格子間侵入で 0.5 at.%~ 1.0 at%程度⁽²⁾) では, Mgの格子間侵入の形成 エネルギーが最も低く,次に Mg サイトの空 孔が安定であることが示唆される. したがっ て、Mg₂Siの電子状態やキャリア輸送に対し、 Mg 関連の格子欠陥(Mg 原子の格子間侵入, 空孔)の影響が特に支配的であると考えられ る. また,図 14 に示した電子状態から、3 れらの欠陥は電子ドープをもたらすため、P 型不純物による正孔ドープと競合する可能 性がある.

図 15. 格子欠陥の形成エネルギー

そこで、本研究では、Mg 関連の欠陥と P 型ドーパントを同時に含む系について考察 した.計算結果の一例として Li と欠陥を含 む系の状態密度を図 16 に示す.ここで、格 子欠陥には、図 16(a)は Mg の格子間侵入を考 え、図 16(b)では Mg の格子間侵入と空孔を考 えた.Liと格子欠陥の濃度は等しく1.04%で ある.まず図 16(a)から、Mg 侵入により伝導 電子が、Li ドープからは正孔が発生した結果、 欠陥によるキャリアドープが勝り、系は N型 伝導性を示す.次に、これらと同時に Mg 空 孔も含む場合(図 16(b))は、Mg 空孔により 正孔が増えた結果、系は再び P 型に転じた.

以上の結果から, P型 Mg₂Si の開発が困難 である理由は,前述した不純物ドーパントの サイト占有の問題に加えて,格子欠陥の影響 も無視できないことが分かった.したがって, Mg₂Si 系材料の開発においては,安定な不純 物ドーパントの探索だけでなく,格子欠陥を 制御することが重要であると結論できる.

図 16. (a) 侵入型, (b) 侵入型+空孔型の 欠陥と Li を同時に含む系の状態密度

<引用文献>

- Y. Oto et al., Thermoelectric properties and durability at elevated temperatures of impurity doped n-type Mg₂Si, Phys. Stat. Sol. C 10, 1857-1861 (2013).
- ② M. Kubouchi et al, Quantitative analysis of interstitial Mg in Mg2Si studied by single crystal X-ray diffraction, J. Allloy. Compd. 617, 389-392 (2014).

5. 主な発表論文等

〔雑誌論文(査読付)〕(計5件)

- <u>N. Hirayama</u> et al., Influence of native defects on structural and electronic properties of magnesium silicide, Jpn. J. Appl. Phys. 56 05DC05 (2017).
- ② 飯田努,平山尚美,マグネシウムシリサイド系熱電材料の実用化に向けた製造プロセス,まてりあ 55,302-306 (2016).
- ③ <u>N. Hirayama</u> et al., First-principles investigation of structural, electronic, and thermoelectric properties of *n*- and *p*-type Mg₂Si, J. Mater. Res. **30** 2564–2577 (2015).
- ④ <u>N. Hirayama</u> et al., Theoretical analysis of structure and formation energy of impurity-doped Mg₂Si : Comparison of first-principles codes for material properties, Jpn. J. Appl. Phys. 54, 07JC05 (2015).
- (5) <u>N. Hirayama</u> et al., First-Principles Study on Structural and Thermoelectric Properties of Al-and Sb-Doped Mg₂Si, J. Elect. Mater. 44, 1656–1662 (2014).

〔学会発表〕(計10件)

- <u>N. Hirayama</u> et al., Influence of Mg-related Defects on Structural and Electronic Properties of Mg₂Si, APAC-Silicide 2016, Japan, 2016 (Oral).
- ② Mg₂Siの電子状態に対する不純物ドープ 効果および格子欠陥の影響に関する理論 研究,応用物理学会第28回シリサイド系 半導体研究会(新潟)2016年(ロ頭発表)
- ③ <u>N. Hirayama</u> et al., Electronic and thermoelectric properties of impurity doped Mg₂Si incorporating Mg-related defects, 14th European Conference on Thermoelectrics, Portugal, 2016 (Oral).

(他7件)

- 6. 研究組織
- (1) 研究代表者
 平山 尚美(HIRAYAMA, Naomi)
 首都大学東京・理工学研究科・特任助教
 研究者番号: 70581750
- (2)研究連携者 飯田 努(IIDA, Tsutomu)
 東京理科大学・基礎工学部・教授
 研究者番号: 20297625
- (3) 研究連携者
 西尾 圭史 (NISHIO, Keishi)
 東京理科大学・基礎工学部・教授
 研究者番号: 90307710
- (4) 研究連携者
 舩島 洋紀 (FUNASHIMA, Hiroki)
 神戸大学・理学研究科・講師
 研究者番号: 60434049