科学研究費助成事業

平成 28年 6月 7日現在

研究成果報告書

機関番号: 8 2 6 2 6
研究種目: 研究活動スタート支援
研究期間: 2014~2015
課題番号: 2 6 8 8 9 0 7 5
研究課題名(和文)シリコーンゴムを利用した微細パターニング技術における転写メカニズムの解明
研究課題名(英文)Transfer Mechanisms of Quasi-solid Ink Layers in Silicone-based Printing.
研究代表者
日下 靖之 (Kusaka, Yasuyuki)
国立研究開発法人産業技術総合研究所・フレキシブルエレクトロニクス研究センター・研究員
研究者番号:00738057
交付決定額(研究期間全体):(直接経費) 1,800,000円

研究成果の概要(和文):近年のIoTへの期待の高まりとともに、印刷法によって電子デバイスを製造する試みが盛ん に行なわれている。本研究では、印刷技術のなかでもシリコーンゴムを利用した微細パターニング技術に着目し、転写 原理および印刷プロセス技術の高度化に関する研究を行った。その結果、インクの乾燥に伴う膜の固化および付着力の 制御が高精細印刷において重要であることが明らかになった。また底当たり欠陥、積層デバイスにおける断線回避およ びラピッドプロトタイピングの実現を目的として、埋込電極形成、プッシュプルプロセス、溶媒リフローおよび付着力 コントラスト平版印刷の開発に成功した。

研究成果の概要(英文): Printed electronics have gathered considerable attention as a next-generation manufacturing process for electronic devices because of their simplicity and cost-effectiveness. To clarify semi-drying mechanism in silicone-based printing techniques, we investigated a relation between transferring quality and the roles of the rheological and adhesive characteristics of semi-dried inks. On the basis of colloidal probe force measurements, it was established that not only enough rigidity but also appropriate adhesive force is required to attain high-quality patterns. We also developed several techniques including (i) embedded electrode formation, (ii) push-pull process for bottom-contact free patterning, (iii) reflow of semi-dried inks for formation of taper structure, and (iv) adhesion contrast planography. The results obtained here not only provide a framework for analyzing printing mechanisms but also a set of processing tools for electronic device fabrications by printing.

研究分野: コロイド界面科学

キーワード:印刷エレクトロニクス 付着力 レオロジー 界面

1. 研究開始当初の背景

印刷によって機能性インクをパターニン グし、電子デバイスを製造する試みが近年盛 んに行なわれている。高機能デバイスを形成 するためには高解像パターンを実現する必 要があることから、数ある印刷法のなかでも、 インク膜を半乾燥化させて流動性を抑制し た後にパターン転写する方式(たとえば、グ ラビアオフセット印刷、スクリーンオフセッ ト印刷、マイクロコンタクト印刷、反転オフ セット印刷など)が注目されている。しかし、 これらの印刷方式におけるインクの半乾燥 化過程や、その結果生じる転写性の変化など は十分評価されておらず、したがって詳しい パターニング原理は明らかになっていなか った。

2. 研究の目的

本研究では、シリコーンゴムを利用した印 刷手法のパターニング原理に関する探求を 行うとともに、印刷エクトロニクス技術の高 度化を目指すことを目的とする。

3. 研究の方法

(1)半乾燥化インクの印刷特性

シリコーンゴムに対する吸収特性が異な る溶媒を混合させることで、乾燥性を制御し たインクを処方し、シリコーンゴム表面上で 乾燥した後のインク膜特性をコロイドプロ ーブ顕微鏡によって評価した。さらにマイク ロコンタクト印刷を実施し、印刷特性との対 応付けを行った。

(2) シリコーンゴム間インク転写

剥離試験機を用いて、インクとシリコーン ゴム界面における密着力測定を行った。特に、 シリコーンゴム表面に塗布されたインクが 「離れる」ときの剥離特性と、シリコーンゴ ムがインクを「受け取る」ときの受理特性の 違いに着目して評価を実施した。さらに、上 記剥離・受理特性の差異を利用することで、 コンタクトインキング式マイクロコンタク ト印刷法の開発を行った。

(3) 埋込平坦電極の形成

シリコーンゴム上で半乾燥化したインク は、乾燥固化が進行し溶媒残存量が少なくな っている点に着目し、半乾燥化インク膜上に 他の絶縁性インク材料をオーバーコートし た後に一括転写することで、埋込型電極を形 成するプロセスについて検討した。

(4) 溶媒リフローとテーパ形成

シリコーンゴム上でパターン形成された 半乾燥化インクを再ウエット化することで、 ラプラス圧によるリフローを促し、膜断面形 状を再構成できるかどうか検討した。再ウエ ット化の手法として溶媒蒸気への曝露試験 を実施した。リフロー前後のインク膜上に積 層印刷し、断線発生率の違いを評価した。 (5) **プッシュプルプロセスと底当たり回避** 半乾燥化したインク膜の表面が、高い付着 性を有する点に着目し、印刷プロセス中のイ ンク・基板間付着力をin-situ評価する とともに、シリコーンブランケットを抜き版 に押し当てたあと、キスタッチ位置またはそ れ以上まで引き上げてからRoll-to-S heet式パターニング(プッシュプルプロ セス)を実施できるか検証した。

(6) 付着カコントラスト平版印刷

極紫外光(波長172nm、照射強度10 mW/cm²のエキシマ光)をシリコーンゴ ム表面に照射し、半乾燥化インクの転写性 (剥離および受理特性)の変化を評価した。 さらに、極紫外光照射部においてインク受理 力が増大すること、およびインク剥離力が低 下することを利用したパターニング法とし て、付着力コントラスト平版印刷法を開発し た。

4. 研究成果

(1) 半乾燥化インクの印刷特性

シリコーンゴムに塗布されたインクの溶 媒は、蒸発およびシリコーンゴムへの溶媒吸 収により失われ、膜の乾燥が進行する(図1)。

図1各種溶媒の沸点と、シリコーンゴム の吸収特性。高沸点でシリコーンゴムに 吸収されない溶媒によってインクの半乾 燥化が達成できる。

シリコーンゴムへの吸収性または揮発性が 比較的高い高損失性溶媒と、蒸発・吸収され にくい低損失性溶媒の混合溶媒に対してモ デル高分子としてポリビニルピロリドンを 溶解させたインクを調合し、マイクロコンタ クト印刷を実施した。その結果、高分子に対 する低損失性溶媒の割合が大きい場合、印刷 後のインクパターンは大きく変形し、かつシ リコーンゴム版側にもインクが残留してし まい、高い解像性を実現できなかった。一方、 半乾燥化後の溶媒残存率が小さい場合、シリ コーンゴムからなるマイクロコンタクト版 表面にインクが付着したままガラスやシリ コン等の基板に転写されなかった。中間の割 合ではパターン崩れなく良好に転写される ことがわかった(図2)。

図2半乾燥時のインク固形分率による印 刷性の違い

各種半乾燥化インクに対してコロイドプロ ーブ顕微鏡によるフォースカーブ測定を行 った結果、半乾燥化後のインク膜の固形分率 の増加とともに膜が変形しにくくなり、良好 な印刷が実現できた条件においては、シリコ ーンゴム(ヤング率3MPa)よりも固く、 塑性変形がほぼ発生しないことがわかった。 一方、シリカプローブに対するインク付着性 は半乾燥時固形分率とともに徐々に減少し、 転写しにくくなることがわかった。このよう に、良好な印刷特性を実現するためには、付 着性の低下とレオロジー的な形状保持特性 を両立しうる範囲でインクが半乾燥化する 必要があり、その評価手法としてコロイドプ ローブ顕微鏡によるフォースカーブ測定が 有効であることが示された。

(2) シリコーンゴム間インク転写

シリコーンゴム表面で塗布・半乾燥化した インクが、全く同一のシリコーンゴム表面に も転写できる現象を観察した。すなわち、シ リコーンゴムがインクを「受け取る」ために 必要な受理力は、シリコーンゴム表面に塗布 されたインクが「離れる」ときの剥離力より も大きくなることがわかった(図3)。さら に、シリコーンゴム表面に塗布されたインク 膜の剥離力は、シリコーンゴムからシリコー ンゴムに1度転写されたインク膜が再度「離 れる」ときの剥離力よりも小さかった。加え て、1度転写されたインク膜を溶媒蒸気に曝 露することで再ウエット化させ、改めて半乾 燥化させたところ、塗布されたインク膜の剥 離力と同一値まで低下することがわかった。 以上を総合すると、インクが塗布されたシリ コーンゴム界面(塗布界面)は、インクから の溶媒移行に伴って湿った状態になり、その 結果、密着力が低下したと考えられる。こ ை 原理を利用することにより、一度平坦なシリ コーンゴム表面に塗布されたインク膜を、凸 版上に加工されたシリコーンゴムに押し当 てることで、凸版凸部にインキングでき、さ らに凸版をガラスやプラスチックフィルム 等の基板に押し当てることによって印刷で きることがわかった。この方法によれば、膜 厚がパターンサイズによらず一定なパター

ン印刷を行うことができる。本研究では最小 1 µ m 幅の銀ナノ粒子ラインを印刷するこ とに成功した。

図3各種 PDMS(A,B,C,D)からインク転 写するために必要な力(横軸)と、PDMS が受理するために必要な力(縦軸)。マルは 転写可能、バツは転写不可能であること を表す。

(3) 埋込平坦電極の形成

シリコーンゴム表面上で半乾燥化した導 電性ナノ銀インク膜に対して、絶縁性インク をオーバーコートし、これらを一括して基板 に転写することで電極の埋込構造を形成し た(図4)。ナノ銀インクの膜厚が約1µm、 絶縁膜の膜厚が約1.4 µmの場合であって も、ナノ銀膜と絶縁膜の段差は80nm以下 で、電極を良好に埋め込むことに成功した。 また上記例において埋込電極の体積抵抗率 は約10 μ Ω c m⁻¹であり、十分な導電性を 確保することができた。また埋込電極を下層 として積層印刷した場合、上層パターンの断 線率が有意に低下することも確認された。さ らに、埋込電極をソース・ドレイン電極に用 いた全印刷有機トランジスタが動作するこ とも確認できた。

図4絶縁膜中に電極が埋め込まれた構造 (スケール:2μm)

(4) 溶媒リフローとテーパ形成 シリコーンゴム表面上で半乾燥化したイ

ンクを、反転オフセット印刷の要領でパター ニングを行った場合、端面における傾斜が約 23°の台形状パターンが形成された。一方、 パターン形成後のインク膜を溶媒蒸気に曝 露させた場合(溶媒リフローという)、円弧 状に湾曲した断面に変化することが確認さ れた。厚みが0.4μmで幅が80、40、 30および20µmのパターンに対して、シ リコーンゴム上で溶媒リフローを行ったと ころ、最大傾斜角が6.5°、4.4°、4. 1°および2.4°まで低下し、膜厚は約0. 6 μ m まで上昇した (図 5)。またパターン 幅の変化はみられなかった。このような矩形 から円弧形への断面形状の変化は、溶媒曝露 に伴う膜の再ウエット化によってラプラス 圧が働いたためであると考えられ、またリフ ロー後の断面形状は、面積および弦長が一定 の条件下で算出される幾何学モデルから定 量的に説明できることがわかった。

図5反転オフセット印刷によってパター ン形成された絶縁性インク膜の断面形状 (上:リフロー前、下:リフロー後)

(5) プッシュプルプロセスと底当たり回避

シリコーンゴム表面上で半乾燥化したイ ンクが高い付着力を有することが(2)の実 験より明らかになった。したがって、反転オ フセット印刷におけるパターン形成過程お よびパターン転写過程においては、シリコー ンブランケットと基板間に外部圧力(いわゆ る印圧)に加えて付着力が作用していること になる。本現象を利用することにより、Ro Sheet式反転オフセット 1 1 tо 印刷におけるパターン形成プロセスにおい て、外部圧力がない状態で反転オフセット印 刷が実施可能なプッシュプルプロセスを開 発した。まず、ロールに貼り付けられたシリ コーンゴム表面にインクを塗布し、ガラス抜 き版に押し当てる (プッシュ工程)。その後、 キスタッチ以上の位置までロールを引き上 げ(プル工程)、インク・抜き版間付着力によ

って接触を維持させた状態で、ロール回転に よりパターニングを実施する。試験的に用い たナノ銀インクでは、引き上げ距離10μm まで付着力による接触を維持できることが わかった(図6)。本技術を利用することに より、アスペクト比の低いパターン(版深が 浅く幅が大きい凹部抜き版に対応)であって も、ブランケットが凹部底面に接触せず、し たがって底当たり欠陥のないパターニング が実施できることを明らかにした。

図6Roll to Sheet式反転 オフセット印刷におけるプッシュプルエ 程。上は抜き版にかかる単位長さあたり の力、下はシリコーンゴムロール胴の位 置を表す。工程 B~Cにおいてロール胴 の位置を押し下げ、工程 D~E で引き上 げ、付着力で接触を維持させた状態でパ ターン形成(工程 F)を行う。

(6) 付着カコントラスト平版印刷

エキシマ光照射によりシリコーンゴムと 半乾燥化インク間付着力が増加することが 明らかになった。さらに(2)で得られた結 果と同様に、塗布界面よりも受理界面のほう がより高い付着力を示すことがわかった。ま たシリコーンゴム組成を変えることにより、 付着力を制御できることも分かった。以上の 基礎データを基に、付着力コントラスト平版 印刷法として、下記4方式を提案し、いずれ の方法においても、最小5µm幅のラインパ ターンの印刷に成功した(図7)。

プロセスA

1、光照射シリコーンゴムにインク塗布 2、未照射シリコーンゴムによるインク受理 3、未照射シリコーンゴム上インクパターン の基板転写

プロセスB 1、光照射シリコーンゴムにインク塗布 2、未照射シリコーンゴムによるインク受理 3、光照射シリコーンゴム上インクパターン の基板転写(プロセスAとポジネガ対応)

プロセスC

- 1、未照射シリコーンゴムにインク塗布
- 2、光照射シリコーンゴムによるインク受理

形成に必要な力が入さいと考えられ、したが って、厚膜の場合は、付着力の差が不十分と なり上記印刷品質の悪化を引き起こしたと 推察された。

Ink-coated PDMS

図7ナノ銀インクが塗布されたシリコー ンゴムブランケットから、エキシマ光照 射により付着力の潜像が形成されたシリ コーンゴムによってインク受理を行った 例

5. 主な発表論文等

〔雑誌論文〕(計6件)

[1] <u>日下 靖之</u>、小倉 晋太郎、牛島 洋史, Exploiting Hygroscopic Nature of IGZO Precursor Thin Films for Adhesive Tape Patterning, Colloid and Interface Science Communications, 8, pp. 6-9, 2016 DOI:10.1016/j.colcom.2015.12.003

[2] <u>日下 靖之</u>、高武正義、牛島 洋史, High Resolution Patterning of Silver Conductive Lines by Adhesion Contrast Planography, JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 25, pp. 095002, 2015 DOI:10.1088/0960-1317/25/9/095002

[3] <u>日下 靖之</u>、野村 健一、福田 伸子、牛 島 洋史, Microcontact Patterning of Conductive Silver Lines by Contact Inking and its Layer-Transfer Mechanisms, JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 25, pp. 055022, 2015 DOI:10.1088/0960-1317/25/5/055022

[4] <u>日下 靖之</u>、高武正義、牛島 洋史, Fabrication of Embedded Electrodes by Reverse Offset Printing, JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 25, pp.045017, 2015 DOI:10.1088/0960-1317/25/4/045017

[5] <u>日下</u>靖之、宮下香織、牛島 洋史, Extending Microcontact Printing for Patterning of Thick Polymer Layers: Semi-drying of Inks and Contact Mechanisms, JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 24, pp. 125019, 2014 DOI:10.1088/0960-1317/24/12/125019

[6] <u>日下 靖之</u>、牛島 洋史, Simple Gravity-assisted Evaluation for Self-directed Movement of a Droplet Driven by Heterogeneous Surface Energies, CHEMISTRY LETTERS, 43-9, pp.1405-1407, 2014 DOI:10.1246/cl.140410

〔学会発表〕(計11件)

[1] <u>日下</u>靖之,一桁ミクロン微細積層印刷 の進化:タクト・信頼性・デザイン自由度向 上のテクニック集,次世代プリンテッドエレ クトロニクス技術セミナー,東京ビッグサイ ト(東京都)、2016/01/27

[2] <u>日下 靖之</u>、牛島 洋史, Development of Adhesion Contrast Planography for Rapid-prototyping of Single Micrometer-sized Silver Conductive Patterns, IFCPE 2015, 台北(台湾)、 2015/10/21

[3] <u>日下 靖之</u>、牛島 洋史, PDMS 表面間付着 力差を利用したナノ銀配線のパターニング 法,第66回コロイドおよび界面化学討論会, 鹿児島大学(鹿児島県)、2015/09/02

[4] <u>日下 靖之</u>、高武正義、牛島 洋史, Rapid Prototyping of Printed Electronic Devices: Planographic Reverse Offset Printing, 8th International conference on molecular electronics and bioelectronics, タワーホール船堀(千葉県)、2015/06/24

[5] 牛島 洋史、<u>日下 靖之</u>、藤田 真理子、 野村 健一、安部 浩司、山本 典孝, Developments of Super Fine Printing Processes for Fabricating the Organic Thin Film Transistor on Flexible Films, 2015 MRS Spring Meeting and Exhibition, サン フランシスコ(アメリカ合衆国)、2015/04/09 [6] <u>日下 靖之</u>、牛島 洋史, コンタクトイン キング式マイクロコンタクト印刷による微 細電極形成とシリコーン間転写, 化学工学会 第 80 回年会, 芝浦工業大学(東京都)、 2015/03/21

[7] <u>日下 靖之</u>、牛島 洋史,マイクロコンタ クト印刷によるレジストパターニング技術 の開発,第29回 エレクトロニクス実装学会 春季講演大会,東京大学(東京都)、 2015/03/18

[8] <u>日下 靖之</u>、牛島 洋史,界面化学と超高 精度印刷技術開発,プリンテッドエレクトロ ニクス技術懇談会,産業技術総合研究所(茨 城県)、2015/02/12

[9] <u>日下 靖之</u>、牛島 洋史,一桁ミクロン印 刷技術開発のミソと複雑三次元形状への印 刷,次世代プリンテッドエレクトロニクス技 術セミナー,東京ビッグサイト(東京都)、 2015/01/28

[10] <u>日下</u>靖之,短タクト・高精度フレキシ ブル印刷 TFT 形成を実現する埋込フラット電 極と一括焼成プロセス,エレクトロニクス実 装学会 2014 ワークショップ,ラフォーレ修 善寺(静岡県)、2014/10/23

[11] <u>日下</u>靖之、宮下香織、牛島 洋史, 耐 エッチングレジスト厚膜のマイクロコンタ クト印刷パターニング技術の開発, 第 65 回 コロイドおよび界面化学討論会, 東京理科大 学(東京都)、2014/09/05

〔産業財産権〕

○出願状況(計2件)
名称:金属酸化物前駆体薄膜パターンの製造方法及 方法、金属酸化物薄膜パターンの製造方法及 び該方法により製造された金属酸化物薄膜 パターン並びに電子部品
発明者:日下靖之、小倉晋太郎、牛島洋史、 藤田真理子
権利者:国立研究開発法人産業技術総合研究 所
種類:特許
番号:特願 2015-150675
出願年月日:2015/07/30
国内外の別:国内

〔その他〕 ホームページ等 https://unit.aist.go.jp/flec/asp/index. html

6.研究組織
 (1)研究代表者
 日下 靖之(KUSAKA, Yasuyuki)
 産業技術総合研究所フレキシブルエレク

トロニクス研究センター・研究員 研究者番号:00738057