• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 前のページに戻る

Metacognitive control of the neural signals that shape behaviour changes

計画研究

研究領域行動変容を創発する脳ダイナミクスの解読と操作が拓く多元生物学
研究課題/領域番号 22H05156
研究種目

学術変革領域研究(A)

配分区分補助金
審査区分 学術変革領域研究区分(Ⅲ)
研究機関株式会社国際電気通信基礎技術研究所

研究代表者

CORTESE Aurelio  株式会社国際電気通信基礎技術研究所, 脳情報通信総合研究所, 研究室長 (60842028)

研究分担者 川人 光男  株式会社国際電気通信基礎技術研究所, 脳情報通信総合研究所, 所長 (10144445)
細谷 晴夫  株式会社国際電気通信基礎技術研究所, 脳情報通信総合研究所, 主任研究員 (50335296)
研究期間 (年度) 2022-06-16 – 2027-03-31
研究課題ステータス 交付 (2024年度)
配分額 *注記
108,420千円 (直接経費: 83,400千円、間接経費: 25,020千円)
2025年度: 24,960千円 (直接経費: 19,200千円、間接経費: 5,760千円)
2024年度: 24,830千円 (直接経費: 19,100千円、間接経費: 5,730千円)
2023年度: 14,170千円 (直接経費: 10,900千円、間接経費: 3,270千円)
2022年度: 19,240千円 (直接経費: 14,800千円、間接経費: 4,440千円)
キーワードAdaptive behavior change / reinforcement learning / metacognition / neural dynamics / cerebellum / decision-making / prefrontal cortex / neuroimaging / decoded neurofeedback / learning / probabilistic PCA / behavioral change / neurofeedback
研究開始時の研究の概要

Our research aims to revolutionise how we understand behaviour change. Over five years we will develop new computer algorithms that can very accurately analyse many behaviour measures from recordings of neural activity. Our team will apply machine learning techniques to complicated behavioural and neural data acquired from experiments in which mice and humans solve decision-making problems. We will then combine our new algorithms with advanced brain imaging in a novel experiment design, in both humans and mice, to control patterns of brain activity and cause changes in the targeted behaviour.

研究実績の概要

Research stream 1 (Hoang, Toyama, Kawato, Cortese): Our research has advanced our understanding of Go/No-go data by incorporating a reinforcement learning model (Hoang et al.2023, eLife). Our findings suggest collaboration between the cerebellum, basal ganglia, and cortex in forming a modular reinforcement learning system. This system involves distinct cerebellar modules receiving reward-prediction errors via climbing fibre inputs, enabling the generation of precise motor commands for Go and No-go cues (Hoang et al. 2023, bioRxiv). Additionally, we have refined a method to detect hundreds of individual climbing fibres across various two-photon recording sessions while learning Go/No-go tasks. These dual achievements provide valuable insights and resources for constructing a sophisticated model of the cerebellum.
Research stream 2 (Okamoto, Six, Taylor, Ovadia, Oka, Gutierrez, Lobaskin, Cortese): We collected data with novel behaviour tasks to test behaviour change through various measures. All tasks shared a common structure, in which participants updated their behaviour to sudden hidden changes in task conditions. We collected participants' subjective confidence ratings along multiple dimensions (perceptual, rule confidence) as well as reaction time data. Our analysis (Taylor, Ovadia, Oka, Lobaskin, Cortese) shows we can obtain reliable behavioural measures with confidence in predicting subsequent behaviour and decision-making. The results were presented at international conferences. In addition, we published an influential opinion paper (De Martino and Cortese 2024, TICS).

現在までの達成度 (区分)
現在までの達成度 (区分)

2: おおむね順調に進展している

理由

Research stream 1 (Hoang, Toyama, Kawato, Cortese): Our current focus lies in developing a model of the cerebellum, which is strongly informed by our recent findings. In our model, these modules are equipped with bidirectional plasticity at the parallel fibre-Purkinje cell synapses. This means climbing fibre inputs convey reward-prediction errors to enhance or decrease Purkinje cell activity, depending on the specific learning objectives. Our preliminary results are promising. The model has successfully replicated the firing activity of climbing fibres observed in the two cerebellar modules, as well as the licking behaviour of mice in Go/No-go tasks. This suggests that our model accurately captures key cerebellar function and behaviour aspects, laying a strong foundation for further exploration and refinement.
Research stream 2 (Okamoto, Six, Taylor, Ovadia, Oka, Gutierrez, Lobaskin, Cortese): Our current focus is characterising multidimensional confidence representations at behaviour, computational, and neural levels. We are writing two manuscripts, which we expect to publish within the current fiscal year, reporting on (i) our study linking learning, behaviour adaptation, and metacognition (Okamoto et al., in prep), and on the neural correlates of metacognitive evaluation (Six et al., in prep). In parallel, we are analysing behaviour and neuroimaging data (fMRI, ECoG, MEG, by Ovadia, Six, Taylor, Lobaskin).

今後の研究の推進方策

Research stream 1 (Hoang, Toyama, Kawato, Cortese): We will construct a large-scale spiking neuron network that includes various neuron types found within the cerebellum. This model will have a modular structure to reflect the organisational principles observed in the cerebellar cortex. The primary focus will be investigating the role of positive feedback loops and Purkinje cells, cerebellar nucleus neurons, and inferior olive neurons in generating self-organising network dynamics. In parallel, we will begin preparation with the Matsuzaki lab on the mouse DecNef project. We will define the target cortical regions and neural population coverage, the decoding approach, and the behaviour dimensions to be modified through neurofeedback.
Research stream 2 (Okamoto, Six, Taylor, Ovadia, Oka, Gutierrez, Lobaskin, Kasahara, Cortese): We will analyse and apply computational models such as reinforcement learning and hierarchical models, to study different confidence signals (perceptual, rule confidence) and their contributions to behaviour strategies. Importantly, we comprehensively evaluate low-dimensional metacognitive representations in time and space across neuroimaging modalities (fMRI, MEG, ECoG). Next, we will collect eye-tracking data to evaluate physiological confidence correlates. We will design and pilot the neurofeedback experiment in the fiscal year's second half.
Finally, we plan to present our findings from both research streams at reputed international conferences.

報告書

(2件)
  • 2023 実績報告書
  • 2022 実績報告書
  • 研究成果

    (24件)

すべて 2024 2023 その他

すべて 雑誌論文 (4件) (うち国際共著 1件、 査読あり 3件、 オープンアクセス 4件) 学会発表 (15件) (うち国際学会 8件、 招待講演 6件) 備考 (5件)

  • [雑誌論文] The cognitive reality monitoring network and theories of consciousness2024

    • 著者名/発表者名
      Aurelio CORTESE, Mitsuo KAWATO
    • 雑誌名

      Neuroscience Research

      巻: 201 ページ: 31-38

    • DOI

      10.1016/j.neures.2024.01.007

    • 関連する報告書
      2023 実績報告書
    • 査読あり / オープンアクセス
  • [雑誌論文] Goals, usefulness and abstraction in value-based choice2024

    • 著者名/発表者名
      Benedetto de MARTINO, Aurelio CORTESE
    • 雑誌名

      Trends in Cognitive Sciences

      巻: 27-1 号: 1 ページ: 65-80

    • DOI

      10.1016/j.tics.2022.11.001

    • 関連する報告書
      2022 実績報告書
    • 査読あり / オープンアクセス / 国際共著
  • [雑誌論文] Dynamic organization of cerebellar climbing fiber response and synchrony in multiple functional components reduces dimensions for reinforcement learning2023

    • 著者名/発表者名
      Huu Hoang, Shinichiro Tsutsumi, Masanori Matsuzaki, Masanobu Kano, Mitsuo Kawato, Kazuo Kitamura, Keisuke Toyama
    • 雑誌名

      eLife

      巻: 12 ページ: 1-28

    • DOI

      10.7554/elife.86340

    • 関連する報告書
      2023 実績報告書
    • 査読あり / オープンアクセス
  • [雑誌論文] Negative reward-prediction errors of climbing fiber inputs for cerebellar reinforcement learning algorithm2023

    • 著者名/発表者名
      Huu HOANG, Shinichiro TSUTSUMI, Masanori MATSUZAKI, Masanobu KANO, Keisuke TOYAMA, Kazuo KITAMURA, Mitsuo KAWATO
    • 雑誌名

      bioRxiv(Web)

      巻: -

    • DOI

      10.1101/2023.03.13.532374

    • 関連する報告書
      2022 実績報告書
    • オープンアクセス
  • [学会発表] Metacognition as the detection of internal signals2024

    • 著者名/発表者名
      Aurelio CORTESE
    • 学会等名
      QB3:Qualia, Brain, Body, Behavior
    • 関連する報告書
      2023 実績報告書
    • 招待講演
  • [学会発表] Human action-outcome inference through weighted evidence accumulation with subjective uncertainty2024

    • 著者名/発表者名
      Naoyuki OKAMOTO
    • 学会等名
      Computational and Systems Neuroscience (COSYNE) 2024
    • 関連する報告書
      2023 実績報告書
    • 国際学会
  • [学会発表] Multiple metacognitive information in different time intervals contributes to the arbitration of credit assignment in a goal-driven task2023

    • 著者名/発表者名
      Takuya ANZAI
    • 学会等名
      The Machine Learning Summer School in Okinawa 2024
    • 関連する報告書
      2023 実績報告書
  • [学会発表] Negative reward-prediction errors of climbing fiber inputs for cerebellar reinforcement learning algorithm2023

    • 著者名/発表者名
      Huu HOANG
    • 学会等名
      第46回日本神経科学大会(Neuro2023)
    • 関連する報告書
      2023 実績報告書
    • 国際学会
  • [学会発表] Dynamic organization of cerebellar climbing fiber response and synchrony in multiple functional modules reduces dimensions for reinforcement learning2023

    • 著者名/発表者名
      Huu HOANG
    • 学会等名
      2023 Cerebellum Gordon Research Conference
    • 関連する報告書
      2023 実績報告書
    • 国際学会
  • [学会発表] Metacognition as a mechanism for concurrent monitoring and updating of internal representations2023

    • 著者名/発表者名
      Aurelio CORTESE
    • 学会等名
      第46回日本神経科学大会(Neuro2023)
    • 関連する報告書
      2023 実績報告書
    • 国際学会
  • [学会発表] Cross-species mechanisms of learning and adaptive behaviour2023

    • 著者名/発表者名
      Aurelio CORTESE
    • 学会等名
      第46回日本神経科学大会(Neuro2023)
    • 関連する報告書
      2023 実績報告書
    • 国際学会
  • [学会発表] How can we assess subjective experiences and internal representations in the brain?2023

    • 著者名/発表者名
      Aurelio CORTESE
    • 学会等名
      The Organization for Human Brain Mapping (OHBM2023)
    • 関連する報告書
      2023 実績報告書
    • 国際学会
  • [学会発表] Metacognition of nonconscious neural representations2023

    • 著者名/発表者名
      Aurelio CORTESE
    • 学会等名
      The Organization for Human Brain Mapping (OHBM2023)
    • 関連する報告書
      2023 実績報告書
    • 国際学会
  • [学会発表] Metacognition for monitoring and updating of internal abstract representations2023

    • 著者名/発表者名
      Aurelio CORTESE
    • 学会等名
      Seminar at Ecole normale superieure
    • 関連する報告書
      2023 実績報告書
    • 招待講演
  • [学会発表] Confidence, abstractions and reinforcement learning in humans and machines2023

    • 著者名/発表者名
      Aurelio CORTESE
    • 学会等名
      the 26th annual meeting of the Korean Society for Brain and Neural Sciences (KSBNS2023)
    • 関連する報告書
      2023 実績報告書
    • 国際学会 / 招待講演
  • [学会発表] Confidence, abstractions and reinforcement learning in humans and machines2023

    • 著者名/発表者名
      Aurelio CORTESE
    • 学会等名
      Seminar at Korea Advanced Institute of Science and Technology (KAIST)
    • 関連する報告書
      2023 実績報告書
    • 招待講演
  • [学会発表] Confidence in hierarchical decision-making2023

    • 著者名/発表者名
      Takeru MISAWA
    • 学会等名
      脳と心のメカニズム冬のワークショップ2023
    • 関連する報告書
      2022 実績報告書
  • [学会発表] Self-organization of cognitive modules in cerebro-cerebellar communication loop2023

    • 著者名/発表者名
      Mitsuo KAWATO
    • 学会等名
      新学術領域「脳情報動態」第3回国際シンポジウム
    • 関連する報告書
      2022 実績報告書
    • 招待講演
  • [学会発表] Metacognition as a mechanism for concurrent monitoring and updating of internal representations2023

    • 著者名/発表者名
      Aurelio CORTESE
    • 学会等名
      「行動変容生物学」第1回国際シンポジウム
    • 関連する報告書
      2022 実績報告書
    • 招待講演
  • [備考] ATR行動変容研究室研究成果

    • URL

      https://bicr.atr.jp/decnef/publications/

    • 関連する報告書
      2023 実績報告書 2022 実績報告書
  • [備考] ATR行動変容研究室Publications

    • URL

      https://bicr.atr.jp/decnef/en/publications-2/

    • 関連する報告書
      2023 実績報告書 2022 実績報告書
  • [備考] ATR計算脳イメージング研究室出版物

    • URL

      https://bicr.atr.jp/cbi/publications/

    • 関連する報告書
      2023 実績報告書 2022 実績報告書
  • [備考] ATR計算脳イメージング研究室Publications

    • URL

      https://bicr.atr.jp/cbi/publications/?lang=en

    • 関連する報告書
      2023 実績報告書 2022 実績報告書
  • [備考] Mitsuo Kawato Publication List English Paper

    • URL

      https://bicr.atr.jp/~kawato/pubep.html

    • 関連する報告書
      2023 実績報告書 2022 実績報告書

URL: 

公開日: 2022-06-20   更新日: 2025-04-17  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi