研究課題/領域番号 |
01540075
|
研究種目 |
一般研究(C)
|
配分区分 | 補助金 |
研究分野 |
代数学・幾何学
|
研究機関 | 東海大学 |
研究代表者 |
田中 實 東海大学, 理学部, 助教授 (10112773)
|
研究分担者 |
山口 勝 東海大学, 理学部, 教授 (10056252)
大谷 光春 東海大学, 理学部, 助教授 (30119656)
|
研究期間 (年度) |
1989
|
研究課題ステータス |
完了 (1989年度)
|
配分額 *注記 |
1,000千円 (直接経費: 1,000千円)
1989年度: 1,000千円 (直接経費: 1,000千円)
|
キーワード | 回転面 / マンゴルトの回転面 / 測地線 / 極 / 最小軌跡 |
研究概要 |
今年度における研究目標はかなり達成できた。特に頂点(回転の中心となる点)をもつ回転面に関しては予想より非常に良い結果を得た。まず基本的性質として、頂点をもつ回転面上の極の作る集合は、頂点を中心とするある半径の閉球をなすことがわかった。次に回転面上の極が2個以上あるための同値条件を、関数L(t)だけの簡単な性質だけで表すことができた。ただし、L(t)は、頂点を中心とする半径tの円の長さを表す。マンゴルトの回転面と呼ばれる回転面を定義し、この回転面上の最小軌跡を完全に決定することに成功した。いくつかの興味深い例を作ることにも成功した。非連結な最小軌跡をもつ回転面、ある点でガウス曲率が正であるが、共役点を持たない回転面の例、極を沢山もつマンゴルトの回転面の例等を見つけた。またマンゴルトの回転面上において、極の作る閉球の半径は、L(t)だけで表せるある幾何学的な等式を満たすことも証明した。最後に主定理を述べるのに必要な定義をしておく。Mを回転面、PをMの頂点とする。各q(Mの点でPでない点)に対して、μ_qをPからでて、qを通る測地線、またt_qをqからでてpを通る測地線とする。ただし、各測地線のパラメ-タ-はその孤長にとるものとする。dをM上のリ-マンの距離関数とするとき、次の定理を証明した。 主定理、Mをマンゴルトの回転面とする。各xに対して、xの最小軌跡C_xは空集合であるか、C_x=u_x〔d(p,x)∞〕である。ただし、xはt_xに沿うxの第一共役点を表す。
|