• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 前のページに戻る

視覚系と同じ特徴に基づく文字認識装置のニュ-ラルネットによる構成の研究

研究課題

研究課題/領域番号 03251217
研究種目

重点領域研究

配分区分補助金
研究機関豊橋技術科学大学

研究代表者

吉田 辰夫  豊橋技術科学大学, 工学部, 教授 (40220652)

研究期間 (年度) 1991
研究課題ステータス 完了 (1991年度)
配分額 *注記
1,800千円 (直接経費: 1,800千円)
1991年度: 1,800千円 (直接経費: 1,800千円)
キーワード視覚系 / 文字認識 / 特徴抽出 / テクストン / ニュ-ラルネット / ネオコグニトロン
研究概要

視覚系における文字認識過程の第1段階では、線分情報が文字から抽出されることが生理学で知られている。心理学では、視覚系が特に高感度で検出するテクストンと呼ばれる形態情報の存在することが知られており、その中には線分の他に、2線分の組み合わせで構成されるパタ-ンのいくつかが含まれるものと推測されている。そこで、2線分の組み合わせで構成されるパタ-ンの中で、テクストンとなり得るものを心理物理学的な方法で探索し、X型交点、T型交点、L型交点の3種のパタ-ンを見出した。
ワ-クステ-ションにイメ-ジスキャナを接続し、ニュ-ラルネットを用いた手書き文字認識装置を構成した。ニュ-ラルネットの基本構成は、3層のネオコグニトロンと、その第1層では線分を、第2層では線分に加えて上記の3種のテクストンを検出する構成とした。第3層では、第2層までに検出した特徴に基づいて、入力文字の識別を行なう。ネットワ-クのパラメ-タを最適に調整した後、英数字36文字を対象としてネットワ-クの学習を行ない、その後、未学習の手書き文字について認識率の測定を行なった。その結果、手書き英数字の認識率は90%であり、線分とテクストンのみを手掛りとして文字認識を行なうことの可能性が示された。第2層で検出する特徴を線分のみとした場合の認識率は86%であり、この差が特徴としてテクストンを用いることの効果と言える。漢字36文字についての認識率は70%程度であり、この場合にはテクストンを用いることの効果は、英数字の場合よりもさらに大きいことが示された。すなわち、複雑な文字になるほど、線分のみを特徴として認識を行なうのは困難となり、有効な特徴を用いることが重要となる。次段階として、漢字認識に視覚系で利用される特徴の解明を行なう計画である。

報告書

(1件)
  • 1991 実績報告書

URL: 

公開日: 1991-04-01   更新日: 2016-04-21  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi