研究概要 |
類体論はア-ベル拡大論の理論であるが,その中心はアルチンの相互法則である。高木が類体論を完成し,アルチンが相互法則をその画竜点晴として加えた。現在類体論の証明は相互法則の証明を直接目指し,その系として高木の同型定理・分解定理などを証明する。筆者はこういう証明方法の不透明さ,非直観性を指摘し,歴史的段階に従って同型定理分解定理を証明して後,相互法則を証明する道筋をより直観性に富むと考え,その方針で証明を簡易化した。 今迄の証明法の非直観性はアルチン写像4:Ck→Gal(J/k)を直接定義せず,その逆写像を定義することに由来すると思われる。そのような方法になる理由はコホモロジカルな証明を用いるからである。 同型定理・分解法則の接接証明を目指するとき,ネックとなるのは存在定理を用いるところにある。その存在定理の証明ま大変困難で,相互法則を用いると大変簡単になるのが問題点である。 筆者は,同型定理‥分解法則の証明に用いられる存在定理は実は限定された種類のものであることを指摘し,限定された存在定理はごく簡単に証明できることを示した。かくして「高木の等式」⇒「高木の類体論」⇒「相互法則」⇒「存在定理」のル-トが確立し,見通しのよい証明法が得られたと確信する。なおこの証明構成は津田塾大学でひらかれた研究会で報告し,論文集も4月には発行されるが,その成度にのっとった類体論の証明を単行書として日本評論社から評行の予定である。
|