研究課題/領域番号 |
03805033
|
研究種目 |
一般研究(C)
|
配分区分 | 補助金 |
研究分野 |
計測・制御工学
|
研究機関 | 東北大学 |
研究代表者 |
亀山 充隆 東北大学, 工学部, 教授 (70124568)
|
研究期間 (年度) |
1991 – 1992
|
研究課題ステータス |
完了 (1992年度)
|
配分額 *注記 |
1,700千円 (直接経費: 1,700千円)
1992年度: 700千円 (直接経費: 700千円)
1991年度: 1,000千円 (直接経費: 1,000千円)
|
キーワード | 集合論理演算 / バイオ素子モデル / バイオチップ / 空間的並列処理 / 超多値論理回路網 / 無配線バイオコンピューティング / 酵素センサ / 完全並列処理 / 多重化 / 並列選択性 / 無配線情報処理 / 多値情報処理 |
研究概要 |
本研究は有機分子の種類を超多値符号化すると共に、基質-酵素生化学反応の特異選択性に着目したバイオ素子モデルを出発点として、新しい集合論的多値演算に基づくバイオ情報処理システムの構築とそのデバイス開発の基礎を与えることができた。以下、その主な成果を列挙する。1.基質と酵素、抗原と抗体のように特異選択性に着目した基本素子である、バイオパスゲートおよびバイオ出力発生器を定義している。本研究の基本概念は、このような生体内の化学反応のメカニズムをヒントにした「並列選択」であり、技術蓄積の多い酵素センサや機能性有機薄膜形成技術を最大限活用できるという意味で現実性のあるアプローチである。2.溶液中で基質など複数種類の有機分子の混合が可能であり、1本の信号線に粒子性担体情報を何種類でも同時にのせられるので、集合論理回路網を容易に構成できる。すなわち、論理演算や通信が溶液媒体に分子情報を放出するという点で、「多重化」の概念に基づいていることになる。3.多値論理代数としても、集合論理代数と呼ぶ新しい領域を開拓することになり、集合和が溶液での混合演算、集合積はド・モルガンの定理を利用した集合和演算への帰着、集合論的リテラルはバイオパスゲートの差集合演算、定数発生器がバイオ出力発生器にそれぞれ対応することになる。4.論理回路レベルのみではなく、(ハードウェア)アルゴリズムレベルでも高並列演算回路の構成理論を考察し、算術演算及び論理演算回路の局所演算性を活用するシステムへの応用に有用である。5.生体に学ぶフォールトトレランスという観点からも、脳細胞のように一部の損傷があっても、致命的な影響のないロバストフォールトトレラント演算システムを考察できた。これは、離散的影響をもつ多重化システムとは異なり、アナログ的影響をもつものであり、バイオ素子の信頼性をカバーする意味で有用である
|