本年度は、双曲型保存則系(空間一時元)における非線形単純波の相互作用の研究と、等温気体の運動方程式系の解の漸近挙動シミュレーションを行った。具体的には 1.双曲型保存則系(空間一次元)における大きな衝撃波と小さな単純波の相互作用: (1)一つの衝撃波の場合:代表者は、昨年の研究において、Chernの安定性条件が成立する一般の双曲型保存則系について、大きな衝撃波の弱ー漸近安定性を証明した。本年度は大きな衝撃波と小さな単純波の相互作用をさらに調べることにより、微小擾乱の台が有界であれば、その衝撃波は強ー漸近安定であることを示した。とくに時間がたつとRandom-Choice法による解は、もとの衝撃波を平行移動したもの(進行波解)に近づく。初期擾乱このズレの関係の解析は今後の課題である。 (2)二つの衝撃波の場合:等温気体の運動方程式系の、Random Choice法による弱解に対して考察した。昨年度は、この場合に弱ー漸近安定性を証明した。本年度は、二つの衝撃波に囲まれた領域において、時間tについての減蓑率が得られた。しかし、大きな初期値の場合、その減衰率はtについて可積分ではないので、(1)のように強ー漸近安定にはならない。従って、二つの進行波に近づくとも限らない。 2.等温気体の運動方程式系の解の漸近挙動シミュレーション: 粘性気体方程式系の粘性を小さくしたものに周期境界条件を与え、PDE1(松村昭孝氏製作)を用いてシミュレーションを行った。とくに、大きな初期値の場合に(感覚的であるが)長時間減衰しない画像を得た。このことにより、二つの衝撃波の場合は、上記1-(1)のような強ー漸近安定性は成立しないと予想される。
|