• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 前のページに戻る

知識ベース・ニューロファジー制御方策による微生物の効率的培養法の研究

研究課題

研究課題/領域番号 05650805
研究種目

一般研究(C)

配分区分補助金
研究分野 生物・生体工学
研究機関九州工業大学

研究代表者

清水 和幸  九州工業大学, 情報工学部, 教授 (00150318)

研究期間 (年度) 1993
研究課題ステータス 完了 (1993年度)
配分額 *注記
2,000千円 (直接経費: 2,000千円)
1993年度: 2,000千円 (直接経費: 2,000千円)
キーワードバイオリアクター / ニューラルネット / ファジィ制御 / 制御培養実験 / 知識ベース制御 / 組み換え大腸菌 / オンライン制御
研究概要

微生物による代謝産物の効率的生産を行うためには、遺伝子組み換え等、DNAレベルでの微生物改変に関する研究と同時に、工業的大量生産の立場からはバイオリアクターの制御培養、とりわけ知識ベース制御に関する研究がますます重要となってきている。
我々はファジィ制御とニューラルネットの両方の利点を兼ね備えた新しいニューロファジィ制御アルゴリズムを提案し、その有効性を示すために、遺伝子組み換え大腸菌(E.coli,JM103)の制御培養実験を行った。
Fig.1に、提案したファジィニューラルネット(FNN)の構造を示す。FNNの入力変数としては、pHの変化と、オンライン濁度計から得られる菌体濃度をもとに計算した比増殖速度とを考え、FNNの出力変数としては基質流加流量を考えた。
まず過去の培養データをFNNに学習させ、そのFNNを用いて培養実験を行った。その結果84g乾燥菌体重量/Lという高密度培養を達成することができた。しかし遺伝子産物であるbeta-ガラクトシダーゼの生産性はあまり高くなく、この原因について検討した結果、遺伝子発現の誘導前後でプロセスの動特性が著しく変化するため、別々のFNNを用意する必要があることがわかった。Fig.2はこの場合の培養結果で、先の結果に比べて約4倍高い遺伝子産物の生産性が達成できた。
以上、本研究結果から提案したニューロファジィ制御方策がバイオプロセス制御に非常に有効であることが実証できた。

報告書

(1件)
  • 1993 実績報告書
  • 研究成果

    (1件)

すべて その他

すべて 文献書誌 (1件)

  • [文献書誌] K.Ye,S.Jin,K.Shimizu: "Fuzzy Neural Network for the Control of High Cell Density Cultivation of Recombinant Escherichia coli" J.Ferment.Bioeng.(in press). (1994)

    • 関連する報告書
      1993 実績報告書

URL: 

公開日: 1993-04-01   更新日: 2019-02-28  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi