• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 前のページに戻る

Kac-Moodyリー環とその表現の研究

研究課題

研究課題/領域番号 05740015
研究種目

奨励研究(A)

配分区分補助金
研究分野 代数学
研究機関静岡大学

研究代表者

内藤 聡  静岡大学, 理学部, 助手 (60252160)

研究期間 (年度) 1993
研究課題ステータス 完了 (1993年度)
配分額 *注記
900千円 (直接経費: 900千円)
1993年度: 900千円 (直接経費: 900千円)
キーワードgeneralized Kac-Moody algebra / 指標 / Kazhdan-Lusztig多項式 / Hecke環 / Kac-Moodyリー環
研究概要

generalized Kac-Moody algebra(=GKM algebra)はCambridge大学のR.Borcherdsにより近年、数理物理学との関連から導入された概念であり、Kac-Moodyリー環の自然な一般化となっている。
今、g (ALPHA)を、対称化可能なGGCMと呼ばれる行列Aに付随するGKM algebra、etaをそのCartan部分環、W⊂GL(eta*)を対応するWeyl群とする。私は、優整形式LAMBDA∈eta*とomega∈Wに対して、omega(LAMBDA+rho)-rhoを最高ウエイトとするg(A)上の既約最高ウエイト表現L(omega(LAMBDA+rho)-rho)の指標を、Kazhdan-Lusztig多項式と呼ばれる、Hecke環の基底の変換の際に現れるある整数係数の多項式を用いて記述する事に(行列Aについての弱い条件の下で)成功した。(ここでrho∈eta*は、g(A)が有限次元半単純リー環の場合には全ての正ルートの和の1/2倍にあたるものである。)
これは、g(A)が有限次元半単純リー環の場合にD.KazhdanとG.Lustigにより、そして対称化可能なKac-Moodyリー環の場合にはV.Deodhar,O.Gabber,V.Kacにより提出され、どちらの場合も京都大学数理解析研究所の柏原正樹教授等により解決された結果(Kazhdan-Lusztig予想)の一般化とみなせる。
上記の私の結果は、2つの論文"Kazhdan-Lusztig multiplicity formula for general-ized Kac-Moody algebras,I:Towards the conjecture"、"Kazhdan-Lusztig multi-plicity formula for generalized Kac-Moody algebras,II:Proof of the conjecture"としてまとめられ、共に現在投稿中である。さらにこれらの論文の要約が、論文"Kazhdan-Lusztig-type multiplicity formula for symmetrizable generalized Kac-Moody algebras"として投稿中である。

報告書

(1件)
  • 1994 実績報告書

URL: 

公開日: 1993-04-01   更新日: 2016-04-21  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi