• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 前のページに戻る

双曲的三次元多様体とクライン群

研究課題

研究課題/領域番号 05740085
研究種目

奨励研究(A)

配分区分補助金
研究分野 解析学
研究機関東京工業大学

研究代表者

松崎 克彦  東京工業大学, 理学部, 助手 (80222298)

研究期間 (年度) 1993
研究課題ステータス 完了 (1993年度)
配分額 *注記
900千円 (直接経費: 900千円)
1993年度: 900千円 (直接経費: 900千円)
キーワードクライン群 / 双曲的多様体 / タイヒミュラー空間 / フックス群 / 擬等角写像 / リーマン面 / モジュライ空間
研究概要

以下の主題において新しい結果が得られ、研究が発展中である。
1.アールフォルス-ベアスの普遍タイヒミュラー空間T(1)は等質的な解析的バナッハ多様体であり、コンパクトリーマン面のタイヒミュラー空間はここに埋め込まれている。コンパクトリーマン面のタイヒミュラー空間はこれまで数多くの研究者によって研究され、応用されてきたが、T(1)および無限次元タイヒミュラー空間の理論は最近になってようやく発展してきた。特にDiff(S)の解析的ケーラー多様体としての埋め込みは、超弦理論におけるloop-spaceの相空間と考えられるもので興味深い。そこでその基礎理論として、T(1)の中でDiff(S)およびタイヒミュラー空間がどのように埋め込まれているかを研究した。Diff(S)はコンパクトリーマン面のタイヒミュラー空間と横断的に交わることの別証明と、タイヒミュラー空間の埋め込みが基点の変化に離散的であることの証明を得た。
2.有限生成クライン群GのPSL(2,C)表現空間を考える。Gが構造安定であるとは、恒等表現の近傍がすべて同型写像からなるときをいう。サリバンはねじれのないGに対し構造安定性の必要十分条件を与え、その力学系は極限集合上で拡張性をもつことを示したが、筆者はこれをねじれを許す場合に拡張し、さらに擬等角安定性が幾何学的有限性と同値であることを証明した。また、有限型リーマン面の射影構造のモノドロミ-表現空間においては、射影構造の展開写像が被覆となっている表現全体を考え、その孤立点と連結成分に関する結果を得た。

報告書

(1件)
  • 1993 実績報告書
  • 研究成果

    (6件)

すべて その他

すべて 文献書誌 (6件)

  • [文献書誌] K.Matsuzaki: "Ergodic properties of discrete groups;inheritance to normal subgroups and invariance under quasiconformal deformations" J.Math.Kyoto Univ.33. 205-226 (1993)

    • 関連する報告書
      1993 実績報告書
  • [文献書誌] K.Matsuzaki: "Simply connected invariant domains of Kleinian groups not in the closures of Teichmuller spaces" Complex Variables. 21. 122-129 (1993)

    • 関連する報告書
      1993 実績報告書
  • [文献書誌] K.Matsuzaki: "Notes on projective structures and Kleinian groups" Osaka J.Math.31(予定). (1994)

    • 関連する報告書
      1993 実績報告書
  • [文献書誌] K.Matsuzaki: "The conservative-dissipative dichotomy for geometric covers of Riemann surfaces" Rev.Roumaine Math.Pures Appl.(予定). (1994)

    • 関連する報告書
      1993 実績報告書
  • [文献書誌] K.Matsuzaki: "Teichmuller spaces with variable bases in the universal Teichmuller space" Ann.Acad.Sci.Fenn.(予定).

    • 関連する報告書
      1993 実績報告書
  • [文献書誌] 谷口雅彦: "双曲的多様体とクライン群" 日本評論社, 243 (1993)

    • 関連する報告書
      1993 実績報告書

URL: 

公開日: 1993-04-01   更新日: 2016-04-21  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi