• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 前のページに戻る

非線形波動モデルにおけるパターンダイナミクス

研究課題

研究課題/領域番号 05740098
研究種目

奨励研究(A)

配分区分補助金
研究分野 解析学
研究機関広島大学

研究代表者

小川 知之  広島大学, 理学部, 助手 (80211811)

研究期間 (年度) 1993
研究課題ステータス 完了 (1993年度)
配分額 *注記
900千円 (直接経費: 900千円)
1993年度: 900千円 (直接経費: 900千円)
キーワード非線形波動方程式 / Benney方程式 / KdV方程式 / 進行波解 / 進行波の安定性
研究概要

散逸や不安定性の効果を持つ非線形波動方程式で知られるBenney方程式について昨年度に続いて更なる解析を行った。KdV方程式の摂動として捉えてKdVでは無数にあるソリトン解やcnoidal波解のうちそれぞれひとつの振幅・速度のもののみ選択されてBenney方程式の解になり得ることが昨年度明かにされたことである。
そこでそれらの解の安定性を調べることが今年度の課題であった。まず周期境界条件で有限区間の問題として捉えると区間の長さに応じて高々有限個の進行波が存在するが、数値計算によりモード数の低い解は不安定になることが示唆された。これはBenney方程式が元来持っている低波数モードの波を増長するという不安定性に起因することであり、現在数学的に解析中である。
逆にモード数の高い解は数値的には安定であることがわかった。区間の長さをパラメーターとしたときある長さの整数倍のところでHoph分岐として各モードの解が出現するがこれらは1モードを除いて不安定である。そこでこれの2次分岐を追跡するのもこれからの課題である。
また無限区間での進行波解の安定性についてはまだ手かかりがつかめたばかりだが、KdV方程式の安定性を扱った結果を応用して2-timing法的に扱える可能性がでてきた。これについては横浜市立大学の栄伸一郎と現在共同研究中である。
上記数値的安定性不安定性について平成5年12月の応用数学合同研究集会にて発表を行った。またその不安定性の数学的解析結果を平成6年4月の日本数学会にて発表予定である。

報告書

(1件)
  • 1993 実績報告書
  • 研究成果

    (1件)

すべて その他

すべて 文献書誌 (1件)

  • [文献書誌] Toshiyuki Ogawa: "Travelling wave solutions to a perturbed Korteweg-de Vries eguation" Hiroshima Mathematical Journal. 24(to appear). (1994)

    • 関連する報告書
      1993 実績報告書

URL: 

公開日: 1993-04-01   更新日: 2016-04-21  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi