セルフシミラーフラクタルと呼ばれるフラクタルは、ファイナイトラミファイトなものと、インフィニットラミファイドなものに、大別できる。今年度の研究で、ファイナイトラミファイドなフラクタルについては、シェルピンスキーガスケット上の、非対称な拡散過程の特徴付けの研究を行い、また、アフィンネスティドフラクタルというクラスを作り、その上の、ある拡散過程について熱方程式の基本解のアーロンソン型の評価を得た。これらの論文は、別記のジャーナルに掲載予定である。これらの論文の作成やフラクタル図形の描画の際、科学研究費の設備備品費で購入したコンピューター及びソフトウェアが役立った。 インフィニットラミファイドなフラクタルについては、図形自体をランダム化したランダムフラクタルのレジスタンスの評価を、プレフラクタルをネットワークとみなして、その上の電流、電圧、抵抗を計算することによって得た。この研究は、東京大学数理科学研究科の楠岡教授および、北京師範大学の周博士との共同研究である。現在得ている結果は、ランダム化したシェルピンスキーカーペットのような、具体的なものに限られており、同様の評価が成り立つランダムフラクタルのクラスをはっきりさせてから、論文にまとめる予定である。 この他、楠岡教授と共同で、ネスティドフラクタルのホモジナイゼーション(均質化)についての研究を行っている。この問題は、ネスティドフラクタル上のブラウン運動の一意性とも関わっており、非常に重要かつ興味深い問題であるが、今のところ部分的な結果しか得られていないので来年度もひきつづき研究を続けて行く計画である。また、直接的な成果としては現れていないが、物理や工学の研究者も交えた研究集会に出席し、自分自身の研究面の視野と交流範囲を広げることができたことは、今後の研究に大きな影響を与えるものと考える。
|