研究概要 |
1994年は主に次の2点で研究の大きな進展があった。 1.有限生成群の表現空間を、universalかつcategoricalに4-有限生成スキームとして、とらえた事。その結果として、種数gで、N点付のタイヒミュラー空間も4-有限型のスキームとなった。(参考文献1,2)。その応用として、タイヒミュラー・モデュラー群の代数表現,非可換CM理論等、新たな問題が生じた。現在研究中である。 Weight系のdualityの理論(これは、一部mirror symmetryを説明している。)の大幅な改良が行われた。その結果dualityの3-函数積による表示,階数24のeven latticeを与えるweight系の分類等ができた。現在それ等のlatticeを代数曲面の超越サイクルのlatticeで表示する計算を行っている。
|