研究課題/領域番号 |
06640277
|
研究種目 |
一般研究(C)
|
配分区分 | 補助金 |
研究分野 |
解析学
|
研究機関 | 早稲田大学 |
研究代表者 |
大谷 光春 早稲田大学, 理工学部, 教授 (30119656)
|
研究分担者 |
小島 清史 早稲田大学, 理工学部, 教授 (30063689)
宮寺 功 早稲田大学, 教育学部, 教授 (50063293)
山田 義雄 早稲田大学, 理工学部, 教授 (20111825)
堤 正義 早稲田大学, 理工学部, 教授 (70063774)
郡 敏昭 早稲田大学, 理工学部, 教授 (50063730)
|
研究期間 (年度) |
1994
|
研究課題ステータス |
完了 (1994年度)
|
配分額 *注記 |
2,100千円 (直接経費: 2,100千円)
1994年度: 2,100千円 (直接経費: 2,100千円)
|
キーワード | 非線形偏微分方程式 / 混合型方程式 / 非線形流体 / シュレディンガー方程式 |
研究概要 |
研究代表者及び理工学部所属の解析学分野分担者を中心とした、外部にも開かれた定期セミナーを早稲田大学理工学部内において週一回(計21回)開催した。この会(応用解析研究会)には、研究分担者のみならず、東京近郊の若手研究者が多く参加し、研究課題関連の話題について活発な討論、意見交換がおこなわれ、研究を遂行する上で非常に有意義であった。また研究経過発表会を数回おこなった。具体的成果については、個々の単独(非線形楕円形、放物型、双曲型、分散型)方程式に関する多くの成果のほかに、Davey-Stewartson(完全流体の表面波)方程式系に対し、弱解の存在と一意性及びその漸近挙動(時間とともに解のある種ノルムが零に近づく)が解明された。 また、界面で化学反応を起こしている拡散方程式系、伝染病をモデル化した反応拡散系について、大域解の存在を示しその漸近挙動を決定した。更に、熱対流と非圧縮性粘性流との混合方程式系に対しては、流体の占める領域の境界が時間とともに変動する、非柱状領域における初期値境界値問題、周期問題の強解の存在と一意性が、柱状領域における熱伝導と粘性流に対してそれぞれ知られている結果を含む極めて一般的な枠組みで解決された。しかしながら、このように多くの成果があげられた一方、最終目標であったシュレディンガー混合型方程式系の多くを含む統一的理論を構築するという課題については、いくつかの有力な手がかりは得られたものの、達成するには至らなかった。今後の課題としたい。
|