• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 前のページに戻る

p-進代数的対称空間の表現論的研究

研究課題

研究課題/領域番号 06740005
研究種目

奨励研究(A)

配分区分補助金
研究分野 代数学
研究機関東北大学

研究代表者

宇澤 達  東北大学, 理学部, 助教授 (40232813)

研究期間 (年度) 1994
研究課題ステータス 完了 (1994年度)
配分額 *注記
1,200千円 (直接経費: 1,200千円)
1994年度: 1,200千円 (直接経費: 1,200千円)
キーワード代数的対照空間 / 相対跡公式 / カルタン分解
研究概要

p-進体F上定義された簡約線型代数群Gの対合σによって、定義されるGの等質空間G/G^σをGの代数的対称空間という。最近G/G^σ=PのF-valued points上の解析がJacquetのrelative trace formula,佐藤一広中の球函数の研究を通して注目されるようになった。今年は次の予想について考察を深めた。
P(F)のG(O_F)-軌道分解がPの可換部分群によってなされる。(Cartan分解の類似)
Fの剰余体が標数が2ではない代数的閉体で、GがF上splitしている時の代表者によって分解が得られている。この結果を剰余体が閉体ではないときに拡張するにあたって、次の写像の繊維を求めることが問題となる。
Sを,{σ(g)g^<-1>|g∈G(K_<alg>)}のザリスキ閉包とすれば、SはGのK上定義されたアフィン部分多様体となる。AをS内のK-分裂極大輪環部分群とする。
さて、カルタン分解の記述はつぎのようになることが予想される。W=N_G(A)/Z_G(A)として、小ワイル群を定める。Wは自然にX_*(A)に作用することに注意する。
カルタン分解は、ν:G(K)^0\S(K)→X_*(A)/Wが上への写像となること、およびλ∈X_*(A)でのファイバーの形が問題になる。考慮の結果、ファイバーの形はλに付随する放物型部分群のpを法とする還元の問題に帰着することが分かり、その形もほぼ決定することができた。

報告書

(1件)
  • 1994 実績報告書
  • 研究成果

    (2件)

すべて その他

すべて 文献書誌 (2件)

  • [文献書誌] N.Inui,M.Katori,T.Uzawa: "Duality and universality in nonequilibrium models" J.Phys.A.:Math.Gen.(予定). 1-23 (1995)

    • 関連する報告書
      1994 実績報告書
  • [文献書誌] T.Uzawa: "Real moment maps" (preprint). 1-72 (1995)

    • 関連する報告書
      1994 実績報告書

URL: 

公開日: 1994-04-01   更新日: 2016-04-21  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi