• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 前のページに戻る

一般化されたKac-Moodyリー環の表現の研究

研究課題

研究課題/領域番号 06740017
研究種目

奨励研究(A)

配分区分補助金
研究分野 代数学
研究機関静岡大学

研究代表者

内藤 聡  静岡大学, 理学部, 助手 (60252160)

研究期間 (年度) 1994
研究課題ステータス 完了 (1994年度)
配分額 *注記
900千円 (直接経費: 900千円)
1994年度: 900千円 (直接経費: 900千円)
キーワードgeneralized Kac-Moody algebra / ホモロジー群 / 完全可約性 / Kac-Moodyリー環
研究概要

generalized Kac-Moody algebra(=GKM algebra)は、近年Borcherdsにより、位数最大の散在型有限単純群であるMonster群の無限次元表現moonshine moduleの研究の過程において導入された概念であり、Kac-Moodyリー環の自然な一般化ともなっている。
今、g(A)を、対称なGGCMと呼ばれる行列Aに付随するGKM algebra、p^-をそのopposite parabolic subalgebra、そしてu^-はp^-のnilpotent radical、mはp^-のmaximal reductive subalgebraであるとする。このとき、自明な一次元加群Cに係数を持つu^-のホモロジー群Hp(u^-,C)(p【greater than or equal】0)の、m-加群としての既約分解を決定する事は非常に重要な問題であり、mがKac-Moodyリー環の場合には、既に解決されている。特に、p^-がopposite Borel subalgebra b^-であるときは、このホモロジー群の指標の交代和を取る事により、ある種の離散部分群に関する有理型保型形式が得られる事が分かっている。
ところが、mが必ずしもKac-Moodyリー環でない場合、即ち、一般のGKM環である場合には、カテゴリーOに属するGKM環上の加群が完全可約である為の良い十分条件が知られていなかった事もあって、あまり調べられていなかった。
私は、この完全可約性の為の(かなり一般的な)一つの十分を得、それを利用して、ある条件の下でホモロジー群Hp(u^-,C)がm-加群として完全可約である事を示し、そのm-既約成分への直和分解を決定した。
さらに、今後の計画としては、この結果をGKM環のroot multiplicity等の研究に応用する事を考えている。

報告書

(1件)
  • 1994 実績報告書

URL: 

公開日: 1994-04-01   更新日: 2016-04-21  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi