• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 前のページに戻る

結び目理論におけるVassiliev不変量の研究

研究課題

研究課題/領域番号 06740060
研究種目

奨励研究(A)

配分区分補助金
研究分野 幾何学
研究機関名古屋工業大学

研究代表者

大山 淑之  名古屋工業大学, 工学部, 講師 (80223981)

研究期間 (年度) 1994
研究課題ステータス 完了 (1994年度)
配分額 *注記
900千円 (直接経費: 900千円)
1994年度: 900千円 (直接経費: 900千円)
キーワード結び目 / バシリエフ不変量 / ツウィスティング / トーラス結び目
研究概要

1990年いわゆる量子群不変量をすべて含んでしまう様なVassiliev不変量が登場し、更に公理的な定義も可能となった。しかしこの不変量は、不変数の無限例という形をとり各orderがベクトル空間となり計算することさえ、たいへん困難なものである。既に研究者本人により,ある特別な性質をもつ結び目に対しては、無制限のあるところま、ですべて0の値をとってしまうことが知られている。見方をかえればVassiliev不変量を正則射影図により特微付けたともいえる。Vassiliev不変量自体、数理物理等の分野の研究により様々な解釈がなされているのであるが、結び目理論からみれば、結び目のどの様な特微をとらえているのか、研究することが重要視され、代表的な結び目に対し、どの程度情報が与えられるのかという研究が必要となる。そこで結び目に対するtwistingという操作とVassiliev不変量の関係について考察をおこなった。Twistingは補空間のswrgeryといいかえることができ,結び目の局所変形としても,代表的なものである。自明な結び目のある射影図をとり、局所的にひねりを加えていく。すると、結び目の無限列を定義することができ、Vassiliev不変量を.その無限列に制限すると、Vassiliev不変量の次元が決定でき,topologicalな情報としては,order2と3によりつくされてしまうことがわかる。このことにより,ある種のtorus kuotのVassiliev不変量が決定できたことになる。

報告書

(1件)
  • 1994 実績報告書
  • 研究成果

    (1件)

すべて その他

すべて 文献書誌 (1件)

  • [文献書誌] Yoshiyuki Ohyama: "Vassiliev invariants and similarity of kuots" Proceeding of the American Mathematical Society. 123. 287-291 (1995)

    • 関連する報告書
      1994 実績報告書

URL: 

公開日: 1994-04-01   更新日: 2016-04-21  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi