• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 前のページに戻る

非線型双曲型偏微分方程式の解の特異性の伝播の研究

研究課題

研究課題/領域番号 06740120
研究種目

奨励研究(A)

配分区分補助金
研究分野 解析学
研究機関岡山大学

研究代表者

佐々木 徹  岡山大学, 環境理工学部, 講師 (20260664)

研究期間 (年度) 1994
研究課題ステータス 完了 (1994年度)
配分額 *注記
900千円 (直接経費: 900千円)
1994年度: 900千円 (直接経費: 900千円)
キーワード非線型方程式 / 偏微分方程式 / 双曲型方程式 / 特異性の伝播 / 超可微分性 / 超局所解析
研究概要

1.空間次元1の場合の一般の非線型2階双曲型方程式の解の超可微分性が,その線型化方程式の特性曲線に沿って伝播するかどうかを考察した.これは,半線型方程式に帰着させるとよい.この半線型方程式については,既に超可微分性の伝播について研究してあるので,いかにこの方程式に帰着させるかが問題である.H.LewyやK.Friedrichsの方法を研究した.
2.空間1次元の半線型双曲型方程式系および3階以上の方程式の超可微分関数のカテゴリーにおける研究を、J.RauchやM.Reedが無限回微分可能関数のカテゴリーにおいて行なった超局所解析を参考に行なった.
3.変則的な特異性が生ずる条件を,空間次元が1の場合を中心に行なっている.空間次元が1の時には2階の単独方程式では変則的な特異性が現われないので,ここでは方程式系を考察している.まず,J.RauchとM.Reedによって得られた例を中心に検討した.J.RauchとM.Reedの例は,線型の非斉次方程式に帰着して考察しているものである.さらに非線型項のフーリェ変換を精密に考察している.
4.J.F.Colombeauの一般関数を用いて解の特異性の伝播を考察している.まず,一般関数のクラスや同値関係の定義を整理し,理論を展開し易くするよう試みている.ここでは,パラディストリビューションの理論や超準解析を参考にしつつ,超局所解析の理論などにのりやすいクラスや同値関係を考察している.

報告書

(1件)
  • 1994 実績報告書
  • 研究成果

    (1件)

すべて その他

すべて 文献書誌 (1件)

  • [文献書誌] 佐々木 徹: "非線型双曲型微分方程式の解の特異性の伝播について" 岡山大学教養部紀要. 35. 61-75 (1994)

    • 関連する報告書
      1994 実績報告書

URL: 

公開日: 1994-04-01   更新日: 2016-04-21  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi