研究課題/領域番号 |
06F06323
|
研究種目 |
特別研究員奨励費
|
配分区分 | 補助金 |
応募区分 | 外国 |
研究分野 |
数学一般(含確率論・統計数学)
|
研究機関 | 東京大学 |
研究代表者 |
山本 昌宏 東京大学, 大学院・数理科学研究科, 准教授
|
研究分担者 |
LI S.
李 書敏 東京大学, 大学院・数理科学研究科, 外国人特別研究員
LI Shumin 東京大学, 大学院数理科学研究科, 外国人特別研究員
|
研究期間 (年度) |
2006 – 2008
|
研究課題ステータス |
完了 (2008年度)
|
配分額 *注記 |
2,300千円 (直接経費: 2,300千円)
2008年度: 600千円 (直接経費: 600千円)
2007年度: 1,200千円 (直接経費: 1,200千円)
2006年度: 500千円 (直接経費: 500千円)
|
キーワード | 逆問題 / 安定性 / 双曲方程式系 / Lame方程式 / Maxwell方程式 / 異方性 / Carleman評価 / 異方性媒質 |
研究概要 |
媒質の異方性を境界の観測値から決定したり、望まれている出力を実現するように決定する逆問題は、数学だけでなく応用においても重要であるが、媒質が異方性の場合には結果が少ないので、このような課題に集中的に取り組んだ。特に、Maxwell方程式系について、媒質のより一般的な異方性を境界の有限回の観測値から決定する逆問題の一意性と安定性を確立しつつあり、一般的な異方性媒質におけるMaxwell方程式に対するCarleman評価を証明する予定である。このような評価は逆問題を解決するために基本的なステップであるが、この部分の研究は、まだ最終的な成果の公表には至っていない。 同時に異方性媒質におけるLame方程式系の逆問題についも同様な研究を行ったが、これはMaxwell方程式の場合に比べてはるかに困難であり、キーテクニックであるCarleman評価といわれる重みつきの不等式に確立にはまだ課題が残されている。 さらに、薄い殻(シェル)の方程式を考え、弾性係数を境界観測で決定するという逆問題の一意性と安定性を解決し、論文はまもなく出版される予定である。 また、平成19年6月にフランスに出張し、Pont-a-Moussonにおける国際会議に招待され、上記の研究成果を発表し、Carleman評価による逆問題や制御理論における専門家と意見交換ならびに議論を行い、今後の研究の進め方の細部にわたり、貴重な示唆を得た。
|